【題目】如圖,在RtABC中,∠BAC90°,DBC的中點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)AAFBCBE的延長(zhǎng)線于點(diǎn)F

1)求證:四邊形ADCF是菱形;

3)若AC5,AB6,求菱形ADCF的面積.

【答案】(1)證明見(jiàn)解析;(2)15.

【解析】

1)可先證得△AEF≌△DEB,可求得AF=DB,可證得四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可求得AD=CD,可證得結(jié)論;

2)根據(jù)條件可證得S菱形ADCF=SABC,結(jié)合條件可求得答案.

1)證明:∵EAD的中點(diǎn),

AEDE,

AFBC

∠AFE∠DBE,

△AEF△DEB

,

△AEF≌△DEBAAS),

AFDB

∵點(diǎn)D時(shí)BC中點(diǎn),

BD=DC,

AF=DC,

AFBC

∴四邊形ADCF是平行四邊形,

∠BAC90°DBC的中點(diǎn),

ADCDBC,

∴四邊形ADCF是菱形;

2)解:設(shè)AFCD的距離為h,

AFBC,AFBDCD∠BAC90°,

S菱形ADCFCDhBCh=SABC,

SABCABAC

S菱形ADCF15.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在雙曲線yk≠0)的第一象限的分支上,AB垂直y軸于點(diǎn)B,點(diǎn)Cx軸正半軸上,OC2AB,點(diǎn)E在線段AC上,且AE3EC,點(diǎn)DOB的中點(diǎn),連接CD,若CDE的面積為1,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,AB=AC=10,BC=16,點(diǎn)DBC邊上的動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)BC重合).以D為頂點(diǎn)作∠ADE=B,射線DEAC邊于點(diǎn)E,過(guò)點(diǎn)AAFAD交射線DE于點(diǎn)F,連接CF

1)求證:△ABD∽△DCE;

2)當(dāng)DEAB時(shí)(如圖2),求AE的長(zhǎng);

3)點(diǎn)DBC邊上運(yùn)動(dòng)的過(guò)程中,是否存在某個(gè)位置,使得DF=CF?若存在,求出此時(shí)BD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點(diǎn)的中點(diǎn),于點(diǎn),經(jīng)過(guò)點(diǎn),將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)),于點(diǎn),于點(diǎn),則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),ABx軸于點(diǎn)B,=,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)CD.延長(zhǎng)AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為

1)求反比例函數(shù)的解析式及點(diǎn)E的坐標(biāo);

2)連接BC,求SCEB

3)若在x軸上的有兩點(diǎn)Mm,0N-m,0).

①以EM、C、N為頂點(diǎn)的四邊形能否為矩形?如果能求出m的值,如果不能說(shuō)明理由.

②若將直線OAO點(diǎn)旋轉(zhuǎn),仍與y=交于C、E,能否構(gòu)成以E、MC、N為頂點(diǎn)的四邊形為菱形,如果能求出m的值,如果不能說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐:

概念理解:將△ABC 繞點(diǎn) A 按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角記為 θ0°≤θ90°),并使各邊長(zhǎng)變?yōu)樵瓉?lái)的 n 倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],

問(wèn)題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得到△AB′C′,使點(diǎn) B,CC′在同一直線上,且四邊形 ABBC′為矩形,求 θ n 的值.

拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對(duì)△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x10的正整數(shù)倍).

1)設(shè)一天訂住的房間數(shù)為y,直接寫出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

2)設(shè)賓館一天的利潤(rùn)為w元,求wx的函數(shù)關(guān)系式;

3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,∠ACB90°,∠CAB30°,以線段AB為邊向外作等邊△ABD,點(diǎn)E是線段AB的中點(diǎn)連接CE并延長(zhǎng)交線段AD于點(diǎn)F

1)求證四邊形BCFD為平行四邊形;

2)若AB6求平行四邊形BCFD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)等腰三角形的三邊長(zhǎng)均滿足方程x2-6x+8=0,則此三角形的周長(zhǎng)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案