【題目】如圖,在RtABC中,ACBC,∠ACB90°,DAB的中點(diǎn),E為線段AD上一點(diǎn),過E點(diǎn)的線段FGCD的延長線于G點(diǎn),交ACF點(diǎn),且EGAE.分別延長CE,BG交于點(diǎn)H,若EH平分∠AEG,HD平分∠CHG則下列說法:①∠GDH45°;②GDED;③EF2DM;④CG2DE+AE,正確的是(  )

A.①②③B.①②④C.②③④D.①②③④

【答案】B

【解析】

首先證明△AEC≌△GECSAS),推出CA=CG,∠A=CGE=45°,推出DE=DG,故②正確;再證明△EDC≌△GDB,推出∠CED=BGD,ED=GD,由三角形外角的性質(zhì)得出∠HDG=HDE,進(jìn)而得出∠GDH=EDH=45°,即可判斷①正確;

通過證明△EDC和△EMD是等腰直角三角形,得到ED=MD,再通過證明△EFC≌△EDC,得到EF=ED,從而可判斷③錯(cuò)誤;由CG=CD+DG,CD=AD,ED=GD,變形即可判斷④正確.

AC=BC,∠ACB=90°,AD=DB,

CDABCD=AD=DB,∠A=CBD=45°.

EH平分∠AEG

∴∠AEH=GEH

∵∠AEH+AEC=180°,∠GEH+CEG=180°,

∴∠AEC=CEG

AE=GE,EC=EC

∴△AEC≌△GECSAS),

CA=CG,∠A=CGE=45°.

∵∠EDG=90°,

∴∠DEG=DGE=45°,

DE=DG,∠AEF=DEG=A=45°,

故②正確;

DE=DG,∠CDE=BDG=90°,DC=DB,

∴△EDC≌△GDBSAS),

∴∠CED=BGD,ED=GD

HD平分∠CHG,

∴∠GHD=EHD

∵∠CED=EHD+HDE,∠BGD=GHD+HDG,

∴∠HDG=HDE

∵∠EDG=ADC=90°,

∴∠GDH=EDH=45°,故①正確;

∵∠EDC=90°,ED=GD,

∴△EDC是等腰直角三角形,

∴∠DEG=45°.

∵∠GDH=45°,

∴∠EDH=45°,

∴△EMD是等腰直角三角形,

ED=MD

∵∠AEF=DEG=A=45°,

∴∠AFE=CFG=90°.

∵∠EDC=90°,

∴∠EFC=EDC=90°.

EH平分∠AEG

∴∠AEH=GEH

∵∠FEC=GEH,∠DEC=AEH,

∴∠FEC=DEC

EC=EC,

∴△EFC≌△EDC,

EF=ED,

EF=MD

故③錯(cuò)誤;

CG=CD+DG=AD+ED=AE+ED+ED,

CG=2DE+AE,

故④正確.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘觀光游船從港口以北偏東的方向出港觀光,航行海里至處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測得事故船在它的北偏東方向,馬上以海里每小時(shí)的速度前往救援,海警船到達(dá)事故船處所需的時(shí)間大約為________小時(shí)(用根號(hào)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于D,DEABAB的延長線于E,DFAC,現(xiàn)有下列結(jié)論:①DE=DF DE+DF=AD; DM平分∠ADF; AB+AC=2AE,其中正確的個(gè)數(shù)有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CAB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),ADBE,且ADBCBEAC

1)求證:CDCE;

2)連接DE,交AB于點(diǎn)F,猜想BEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),過作直線,設(shè)的平分線于點(diǎn),交

的外角平分線于點(diǎn)

探究:線段的數(shù)量關(guān)系并加以證明;

當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿足什么條件時(shí),四邊形是正方形?

當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),四邊形會(huì)是菱形嗎?若是,請證明,若不是,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADE均為等腰直角三角形,,B、C、E三點(diǎn)共線,BE平分∠AED,F(xiàn)CD的中點(diǎn),AF、AC的延長線分別交DEH、G點(diǎn)。

求證:⑴;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求作圖:已知A(﹣2,1),B(﹣1,2),C(﹣3,4).

1)畫出與三角形ABC關(guān)于y軸對(duì)稱的三角形A1B1C1;

2)將三角形A1B1C1先向右平移2個(gè)單位,再向下平移1個(gè)單位,得到三角形A2B2C2,則三角形A2B2C2頂點(diǎn)坐標(biāo)分別為:A2   B2   C2   ;

3)若點(diǎn)Pa,a2)與點(diǎn)Q關(guān)于x軸對(duì)稱,PQ2,則a的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點(diǎn)為(3,-6)的拋物線經(jīng)過點(diǎn)(1,-4),下列結(jié)論:①b24ac;ax2+bx+c6③若點(diǎn)(2,m),(-5,n)在拋物線上,則mn;④關(guān)于x的一元二次方程的兩根為﹣5和﹣1,其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)F、BE、C在同一直線上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知條件證明△ABC≌△DEF?如果能,請給出證明;如果不能,請從下列三個(gè)條件中選擇一個(gè)合適的條件,添加到已知條件中,使△ABC≌△DEF,并給出證明.

提供的三個(gè)條件是:①AB=DE②AC=DF;③AC∥DF

查看答案和解析>>

同步練習(xí)冊答案