【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過點,AB⊥x軸于點B,點C與點A關(guān)于原點O對稱, CD⊥x軸于點D,△ABD的面積為8.
(1)求m,n的值;
(2)若直線(k≠0)經(jīng)過點C,且與x軸,y軸的交點分別為點E,F,當(dāng)時,求點F的坐標(biāo).
【答案】(1)m=8,n=-2;(2) 點F的坐標(biāo)為,
【解析】(1)利用三角形的面積公式構(gòu)建方程求出n,再利用 待定系數(shù)法求出m的的值即可;(2)分兩種情形分別求解如①圖,當(dāng)k<0時,設(shè)直線y=kx+b與x軸,y軸的交點分別為, . ②圖中,當(dāng)k>0時,設(shè)直線y=kx+b與x軸,y軸的交點分別為點,.
(1)如圖②
∵ 點A的坐標(biāo)為,點C與點A關(guān)于原點O對稱,
∴ 點C的坐標(biāo)為.
∵ AB⊥x軸于點B,CD⊥x軸于點D,
∴ B,D兩點的坐標(biāo)分別為,.
∵ △ABD的面積為8,,
∴ .
解得 . ∵ 函數(shù)()的圖象經(jīng)過點,
∴ .
(2)由(1)得點C的坐標(biāo)為.
① 如圖,當(dāng)時,設(shè)直線與x軸,
y軸的交點分別為點
由 CD⊥x軸于點D可得CD∥.
∴ △CD∽△ O.
∴ .
∵ ,
∴ .
∴ .
∴ 點的坐標(biāo)為.
②如圖,當(dāng)時,設(shè)直線與x軸,y軸的交點分別為
點,.
同理可得CD∥,.
∵ ,
∴ 為線段的中點,.
∴ .
∴ 點的坐標(biāo)為.
綜上所述,點F的坐標(biāo)為,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2的圖象如圖所示.已知A點坐標(biāo)為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4……,依次進(jìn)行下去,則點A2019的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點P(2,6),過點P作PA⊥x軸于A,PB⊥y軸于點B.一次函數(shù)的圖象分別交x軸、y軸于點C、D,若tan∠DCO=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△BDP的面積,并根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能是來自太陽的輻射能量,對于地球上的人類來說,太陽能是對環(huán)境無任何污染的可再生能源,因此許多國家都在大陸發(fā)展太陽能.如圖是2013-2017年我國光伏發(fā)電裝機(jī)容量統(tǒng)計圖.根據(jù)統(tǒng)計圖提供的信息,判斷下列說法不合理的是( 。
A.截至2017年底,我國光伏發(fā)電累計裝機(jī)容量為13078萬千瓦
B.2013-2017年,我國光伏發(fā)電新增裝機(jī)容量逐年增加
C.2013-2017年,我國光伏發(fā)電新增裝機(jī)容量的平均值約為2500萬千瓦
D.2017年我國光伏發(fā)電新增裝機(jī)容量大約占當(dāng)年累計裝機(jī)容量的40%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊三角形ABC中,CD為中線,點Q在線段CD上運(yùn)動,將線段QA繞點Q順時針旋轉(zhuǎn),使得點A的對應(yīng)點E落在射線BC上,連接BQ,設(shè)∠DAQ=α
(0°<α<60°且α≠30°).
(1)當(dāng)0°<α<30°時,
①在圖1中依題意畫出圖形,并求∠BQE(用含α的式子表示);
②探究線段CE,AC,CQ之間的數(shù)量關(guān)系,并加以證明;
(2)當(dāng)30°<α<60°時,直接寫出線段CE,AC,CQ之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,BC=3,E是AB邊上一點,EF⊥CE交AD于點F,過點E作∠AEH=∠BEC,交射線FD于點H,交射線CD于點N.
(1)如圖a,當(dāng)點H與點F重合時,求BE的長;
(2)如圖b,當(dāng)點H在線段FD上時,設(shè)BE=x,DN=y,求y與x之間的函數(shù)關(guān)系式,并寫出它的定義域;
(3)連接AC,當(dāng)△FHE與△AEC相似時,求線段DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某賓館有50個房間供游客居住,當(dāng)每個房間每天的定價為180元時,房間會全部住滿;當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費(fèi)用.
(1)若房價定為200元時,求賓館每天的利潤;
(2)房價定為多少時,賓館每天的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com