【題目】如圖,為正三角形,的角平分線,也是正三角形,下列結(jié)論:①:②:③,其中正確的有________(填序號).

【答案】①②③

【解析】

由等邊三角形的性質(zhì)可得AE=AD,∠CAD=BAD=30°,ADBC,可得∠BAE=BAD=30°,且AE=AD,可得EF=DF,“SAS”可證ABE≌△ABD,可得BE=BD,即可求解.

解:∵△ABCADE是等邊三角形,AD為∠BAC的角平分線,
AE=AD,∠CAD=BAD=30°,ADBC,
∴∠BAE=BAD=30°,且AE=AD,
EF=DF
AE=AD,∠BAE=BADAB=AB
∴△ABE≌△ABDSAS),
BE=BD
∴正確的有①②③
故答案為:①②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,有一拋物線其表達(dá)式為.

(1)當(dāng)該拋物線過原點(diǎn)時(shí),求的值;

(2)坐標(biāo)系內(nèi)有一矩形OABC,其中.

①直接寫出C點(diǎn)坐標(biāo);

②如果拋物線與該矩形有2個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+bx+c的對稱軸為直線x=1,該拋物線與x軸的兩個(gè)交點(diǎn)分別為AB,與y軸的交點(diǎn)為C,其中A-1,0.

1)寫出B點(diǎn)的坐標(biāo) ;

2)求拋物線的函數(shù)解析式;

3)若拋物線上存在一點(diǎn)P,使得POC的面積是BOC的面積的2倍,求點(diǎn)P的坐標(biāo);

4)點(diǎn)M是線段BC上一點(diǎn),過點(diǎn)Mx軸的垂線交拋物線于點(diǎn)D,求線段MD長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級一班和二班各推選名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了個(gè)球,兩個(gè)班選手的進(jìn)球數(shù)統(tǒng)計(jì)如下表,請根據(jù)表中數(shù)據(jù)回答問題.

進(jìn)球數(shù)(個(gè))

一班人數(shù)(人)

二班人數(shù)(人)

填表;

平均數(shù)

中位數(shù)

眾數(shù)

方差

一班

2.6

二班

7

7

7

如果要從這兩個(gè)班中選出一個(gè)班代表級部參加學(xué)校的投籃比賽,爭取奪得總進(jìn)球數(shù)團(tuán)體第一名,你認(rèn)為應(yīng)該選擇哪個(gè)班?如果要爭取個(gè)人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個(gè)班?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若整數(shù)使關(guān)于的方程有負(fù)整數(shù)解,且也是四條直線在平面內(nèi)交點(diǎn)的個(gè)數(shù),則滿足條件的所有的個(gè)數(shù)為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于的不等式組有三個(gè)整數(shù)解,且關(guān)于的分式方程有整數(shù)解,則滿足條件的所有整數(shù)的和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,點(diǎn)E、F分別從B、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)E沿BC向終點(diǎn)C運(yùn)動,速度為4cm/s;點(diǎn)F沿CA、AB向終點(diǎn)B運(yùn)動,速度為5cm/s,設(shè)它們運(yùn)動的時(shí)間為xs).

1)求x為何值時(shí),△EFC和△ACD相似;

(2)是否存在某一時(shí)刻,使得△EFD被 AD分得的兩部分面積之比為3:5,若存在,求出x的值,若不存在,請說明理由;

(3)若以EF為直徑的圓與線段AC只有一個(gè)公共點(diǎn),求出相應(yīng)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過點(diǎn)B10)的直線與直線相交于點(diǎn)P(-1,a).且l1y軸相交于C點(diǎn),l2x軸相交于A點(diǎn).

1)求直線的解析式;

2)求四邊形的面積;

3)若點(diǎn)Qx軸上一動點(diǎn),連接PQ、CQ,當(dāng)QPC周長最小時(shí),求點(diǎn)Q坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____

查看答案和解析>>

同步練習(xí)冊答案