【題目】解方程(請選擇合適的方法)

1x2+4x0;

2x2+x0

33xx1)=4x1);

4x24x+4=(32x2

【答案】1x10,x2=﹣4;(2x1,x2;(3x11x2;(4x11,x2

【解析】

(1)利用因式分解法解方程;

(2)利用公式法解方程;

(3)利用因式分解法解方程;

(4)先利用配方法把原式變形,再利用因式分解法解方程.

解:(1xx+4)=0

x0x+40

x10x2=﹣4;

2

;

33xx1)=4x1

3xx1)﹣4x1)=0

x1)(3x4)=0

x11,x2;

4x24x+4=(32x2

x22﹣(32x20

x2+32x)(x23+2x)=0

x11,x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側(cè)的兩個角是相等的.如圖1中:ABCABD有公共邊AB,在AB同側(cè)有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如ABCBCD有公共邊BC,在CB同側(cè)有∠BAC和∠BDC,此時∠BAC=∠BDC

1)請在圖1中再找出一對這樣的角來:      

2)如圖2ABC中,∠ABC90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.

3)在第(2)題的條件下,若此時AB6BD8,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形中, ,則值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,上的兩個定點,為優(yōu)弧上的動點,過點交射線于點,過點,點上,且

1)求證:相切;

2)已知:

①若,求的長;

②當兩點間的距離最短時,判斷四點所組成的四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加快城鎮(zhèn)化建設(shè),某鎮(zhèn)對一條道路進行改造,由甲、乙兩工程隊合作20天可完成.甲工程隊單獨施工比乙工程隊單獨施工多用30天完成此項工程.

(1)求甲、乙兩工程隊單獨完成此項工程各需要多少天?

(2)若甲工程隊獨做a天后,再由甲、乙兩工程隊合作施工y天,完成此項工程,試用含a的代數(shù)式表示y;

(3)如果甲工程隊施工每天需付施工費1萬元,乙工程隊施工每天需付施工費2.5萬元,甲工程隊至少要單獨施工多少天后,再由甲、乙兩工程隊合作施工完成剩下的工程,才能使施工費不超過64萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于A、B兩點(A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標分別為(-1-1)(2,-1),點B的橫坐標的最大值為3,則點A的橫坐標的最小值為( )

A.-3B.-2.5C.-2D.-1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為RO的弦ACBD,AC、BD交于EF上一點,連AF、BFAB、AD,下列結(jié)論:AEBE;ACBD,則ADR;的條件下,若,AB,則BF+CE1.其中正確的是( 。

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,對角線AC、BD交于點O,線段OEOF,且與邊ADAB交于點E、F

1)求證:OEOF

2)連接EF,交AC于點H,若HFAF2,求OHEF;

3)若E、F分別在DAAB延長線上,OEAB交于點M,若MOF∽△EAF,AF1,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:菱形的對角線互相垂直平分.

1)如圖所示,等邊△ABC,求作一點D,連接ADCD,使得四邊形ABCD為菱形(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

2)在現(xiàn)有的圖形上,連接BDAC于點O,并據(jù)此寫出已知,求證和證明過程.

查看答案和解析>>

同步練習(xí)冊答案