【題目】如圖,ADBC,連接BD,點(diǎn)EBC上,點(diǎn)FDC上,連接EF,且∠1=∠2

(1)求證:EFBD

(2)BD平分∠ABC,∠A=130°,∠C70°,求∠CFE的度數(shù).

【答案】(1)證明見解析;(2)CFE=85°.

【解析】

1)由ADBC知∠1=3,結(jié)合∠1=2得∠3=2,據(jù)此即可得證;

2)由ADBC、∠A=130°知∠ABC=50°,再根據(jù)平分線定義及BDEF知∠3=2=25°,由三角形的內(nèi)角和定理可得答案.

解:(1)如圖,

ADBC(已知),

∴∠1=3(兩直線平行,內(nèi)錯角相等).

∵∠1=2

∴∠3=2(等量代換).

EFBD(同位角相等,兩直線平行).

2)解:∵ADBC(已知),

∴∠ABC+A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).

∵∠A=130°(已知),

∴∠ABC=50°

BD平分∠ABC(已知),

,

∴∠2=3=25°

∵在△CFE中,∠CFE+2+C=180°(三角形內(nèi)角和定理),∠C=70°

∴∠CFE=85°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分CAD,交BC的延長線于點(diǎn)E,FAAE,交CB延長線于點(diǎn)F,則EF的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種廣場三聯(lián)漫步機(jī),其側(cè)面示意圖如圖2所示,其中ABAC=120cm,BC=80cmAD=30cm,∠DAC90°.求點(diǎn)D到地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件不能判定四邊形ABCD是矩形的是(  )

A.DAB=∠ABC=∠BCD90°B.ABCD,ABCDABAD

C.AOBO,CODOD.AOBOCODO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD在平面直角坐標(biāo)系中,點(diǎn)A(1,8),B(1,6),C(7,6)

(1)請直接寫出D點(diǎn)的坐標(biāo).

(2)連接OB,ODBD,請求出三角形OBD的面積.

(3)若長方形ABCD以每秒1個單位長度的速度向下運(yùn)動,當(dāng)邊BCx軸重合時(shí),停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒,t為多少時(shí),三角形OBD的面積等于長方形ABCD的面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小正方形的邊長都是1,三角形ABC三個頂點(diǎn)與方格紙中小正方形的頂點(diǎn)重合,請?jiān)诜礁窦堉蟹謩e畫出符合要求的圖形,具體要求如下:

(1)在圖①中平移三角形ABC,點(diǎn)A移動到點(diǎn)P,畫出平移后的三角形PMN;

(2)在圖②中將三角形ABC三個頂點(diǎn)的橫、縱坐標(biāo)都減去2,畫出得到的三角形A1B1C1;

(3)在圖③中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,且A點(diǎn)的坐標(biāo)為(02),C點(diǎn)的坐標(biāo)為(1,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)計(jì)劃把1240噸甲種貨物和880噸乙種貨物用一列火車運(yùn)往某地,已知這列火車掛有A、B兩種不同規(guī)格的貨車車廂共40節(jié),使用A型車廂每節(jié)費(fèi)用為6000元,B型車廂每節(jié)費(fèi)用8000元.如果每節(jié)A型車廂最多可裝35噸甲種貨物和15噸乙種貨物,每節(jié)B型車廂最多可裝25噸甲種貨物和35噸乙種貨物;

1)那么共有哪幾種安排車廂的方案?

2)在上述方案中,哪種方案運(yùn)費(fèi)最省、最少運(yùn)費(fèi)為多少元?

3)在(1)問下,若兩種貨物全部售出,且每噸貨物售出獲利200元,除去運(yùn)費(fèi)獲

154000元,問:在這種情況下是按哪種方案安排車廂的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計(jì)劃購進(jìn)、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進(jìn)價(jià)、售價(jià)如表所示:

)若商場預(yù)計(jì)進(jìn)貨款為元,則這兩種臺燈各購進(jìn)多少盞?

)若商場規(guī)定型臺燈的進(jìn)貨數(shù)量不超過型臺燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時(shí)獲利最多?此時(shí)利潤為多少元?

查看答案和解析>>

同步練習(xí)冊答案