【題目】如圖,在△ABC中,∠ACB=90°,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切于點M,P、Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最小值是( 。
A.1B.2C.3D.4
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的兩邊AD,AB的長分別為3,8,E是AB的中點,反比例函數(shù)y=的圖象經過點E,與CD交于點F.
(1)若點C坐標為(6,0),求m的值及圖象經過D,E兩點的直線解析式;
(2)若DF﹣DE=2,求反比例函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,正方形OABC的頂點O與原點重合,頂點A,C分別在x軸、y軸上,雙曲線y=kx﹣1(k≠0,x>0)與邊AB、BC分別交于點N、F,連接ON、OF、NF.若∠NOF=45°,NF=2,則點C的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校教學樓后面緊鄰著一個山坡,坡上面是一塊平地,如圖所示,BC∥AD,BE⊥AD,斜坡AB長為26米,斜坡AB的坡比為i=12:5,為了減緩坡面防山體滑坡,保障安全,學校決定對該斜坡進行改造,經地質人員勘測,當坡角不超過50°時,可確保山體不滑坡.
(1)求改造前坡頂?shù)降孛娴木嚯xBE的長;
(2)如果改造時保持坡腳A不動,坡頂B沿BC向左移11米到F點處,問這樣改造能確保安全嗎?(tan48.8°≈1.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某地七年級學生身高情況,隨機抽取部分學生,測得他們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中提供的信息,解答下列問題.
(1)填空:樣本容量為 ,a= ;
(2)把頻數(shù)分布直方圖補充完整;
(3)若從該地隨機抽取1名學生,估計這名學生身高低于160cm的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(發(fā)現(xiàn)問題)
(1)如圖1,已知△CAB和△CDE均為等邊三角形,D在AC上,E在CB上,易得線段AD和BE的數(shù)量關系是 .
(2)將圖1中的△CDE繞點C旋轉到圖2的位置,直線AD和直線BE交于點F.
①判斷線段AD和BE的數(shù)量關系,并證明你的結論;
②圖2中∠AFB的度數(shù)是 .
(探究拓展)
(3)如圖3,若△CAB和△CDE均為等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直線AD和直線BE交于點F,分別寫出∠AFB的度數(shù),線段AD、BE間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是矩形ABCD邊AB上一動點(不與點B重合),過點E作EF⊥DE交BC于點F,連接DF,已知AB=4cm,AD=2cm,設A,E兩點間的距離為xcm,△DEF面積為ycm2.
小明根據(jù)學習函數(shù)的經驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小明的探究過程,請補充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點、畫圖、測量、分析,得到了x與y的幾組值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(說明:補全表格時相關數(shù)值保留一位小數(shù))
(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(4)結合畫出的函數(shù)圖象,解決問題:當△DEF面積最大時,AE的長度為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交x軸于點A,B(點A在點B的左側).
(1)求點A,B的坐標,并根據(jù)該函數(shù)圖象寫出y≥0時x的取值范圍;
(2)把點B向上平移m個單位得點B1.若點B1向左平移n個單位,將與該二次函數(shù)圖象上的點B2重合;若點B1向左平移(n+6)個單位,將與該二次函數(shù)圖象上的點B3重合.已知m>0,n>0,求m,n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com