【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE∥AB,EB∥CD,連接DE交BC于點(diǎn)O.
(1)求證:DE=BC;
(2)如果AC=5,,求DE的長.
【答案】(1)證明見解析;(2)10
【解析】
(1)由題意根據(jù)有一個(gè)角是直角的平行四邊形是矩形得到四邊形CDBE為矩形,根據(jù)矩形的性質(zhì)證明結(jié)論;
(2)根據(jù)同角的余角相等得到∠CBA=∠ACD,根據(jù)正切的定義、矩形的性質(zhì)解答即可.
解:(1)證明:
∵在四邊形CDBE中,CE∥AB,EB∥CD,
∴四邊形CDBE是平行四邊形.
∵CD⊥AB于D,
∴∠CDB =90°.
∴四邊形CDBE是矩形.
∴DE=BC.
(2)∵∠ACB=90°,
∴∠ACD+∠BCD=90°.
∵∠CDB =90°,
∴∠CBD+∠BCD=90°.
∴∠ACD =∠CBD.
∴在Rt△CDB中,∠CDB =90°,
,
∵AC=5,
∴BC= 10.
∴DE=BC=10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五張完全相同的卡片的正面分別畫有等邊三角形、平行四邊形、矩形、菱形、正方形,將其背面朝上放在桌面上,從中隨機(jī)抽取一張,所抽取的卡片上的圖形既是軸對稱圖形,又是中心對稱圖形的概率是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn),交直線于點(diǎn).動(dòng)點(diǎn)在直線上以每秒個(gè)單位的速度從點(diǎn)向終點(diǎn)運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)以每秒個(gè)單位的速度從點(diǎn)沿的方向運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)終點(diǎn)時(shí),點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)求點(diǎn)的坐標(biāo)和的長.
(2)當(dāng)時(shí),線段交于點(diǎn)且求的值.
(3)在點(diǎn)的整個(gè)運(yùn)動(dòng)過程中,
①直接用含的代數(shù)式表示點(diǎn)的坐標(biāo).
②利用(2)的結(jié)論,以為直角頂點(diǎn)作等腰直角(點(diǎn)按逆時(shí)針順序排列).當(dāng)與的一邊平行時(shí),求所有滿足條件的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程ax2+2x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求a的取值范圍;
(2)若此方程的一個(gè)實(shí)數(shù)根為1,求a的值及方程的另一個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,M是CD邊上一動(dòng)點(diǎn)(不與D點(diǎn)重合),點(diǎn)D與點(diǎn)E關(guān)于AM所在的直線對稱,連接AE,ME,延長CB到點(diǎn)F,使得BF=DM,連接EF,AF.
(1)依題意補(bǔ)全圖1;
(2)若DM=1,求線段EF的長;
(3)當(dāng)點(diǎn)M在CD邊上運(yùn)動(dòng)時(shí),能使△AEF為等腰三角形,直接寫出此時(shí)tan∠DAM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點(diǎn)A,過點(diǎn),且平行于x軸的直線與一次函數(shù)的圖象,反比例函數(shù)的圖象分別交于點(diǎn)C,D.
(1)求點(diǎn)D 的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)m = 1時(shí),用等式表示線段BD與CD長度之間的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)BD≤CD時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1) ,將一個(gè)正六邊形各邊延長,構(gòu)成一個(gè)正六角星形AFBDCE,它的面積為1,取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和1D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E 2F 2,如圖(3) 中陰影部分;如此下去…,則正六角星形AnFnBnDnCnE nF n的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD為矩形,曲線L經(jīng)過點(diǎn)D.點(diǎn)Q是四邊形ABCD內(nèi)一定點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),作PM⊥AB交曲線L于點(diǎn)M,連接QM.
小東同學(xué)發(fā)現(xiàn):在點(diǎn)P由A運(yùn)動(dòng)到B的過程中,對于x1=AP的每一個(gè)確定的值,θ=∠QMP都有唯一確定的值與其對應(yīng),x1與θ的對應(yīng)關(guān)系如表所示:
x1=AP | 0 | 1 | 2 | 3 | 4 | 5 |
θ=∠QMP | α | 85° | 130° | 180° | 145° | 130° |
小蕓同學(xué)在讀書時(shí),發(fā)現(xiàn)了另外一個(gè)函數(shù):對于自變量x2在﹣2≤x2≤2范圍內(nèi)的每一個(gè)值,都有唯一確定的角度θ與之對應(yīng),x2與θ的對應(yīng)關(guān)系如圖2所示:
根據(jù)以上材料,回答問題:
(1)表格中α的值為 .
(2)如果令表格中x1所對應(yīng)的θ的值與圖2中x2所對應(yīng)的θ的值相等,可以在兩個(gè)變量x1與x2之間建立函數(shù)關(guān)系.
①在這個(gè)函數(shù)關(guān)系中,自變量是 ,因變量是 ;(分別填入x1和x2)
②請?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,并畫出這個(gè)函數(shù)的圖象;
③根據(jù)畫出的函數(shù)圖象,當(dāng)AP=3.5時(shí),x2的值約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB,如果將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,則稱點(diǎn)C為線段AB關(guān)于點(diǎn)A的逆轉(zhuǎn)點(diǎn).點(diǎn)C為線段AB關(guān)于點(diǎn)A的逆轉(zhuǎn)點(diǎn)的示意圖如圖1:
(1)如圖2,在正方形ABCD中,點(diǎn)_____為線段BC關(guān)于點(diǎn)B的逆轉(zhuǎn)點(diǎn);
(2)如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x,0),且x>0,點(diǎn)E是y軸上一點(diǎn),點(diǎn)F是線段EO關(guān)于點(diǎn)E的逆轉(zhuǎn)點(diǎn),點(diǎn)G是線段EP關(guān)于點(diǎn)E的逆轉(zhuǎn)點(diǎn),過逆轉(zhuǎn)點(diǎn)G,F的直線與x軸交于點(diǎn)H.
①補(bǔ)全圖;
②判斷過逆轉(zhuǎn)點(diǎn)G,F的直線與x軸的位置關(guān)系并證明;
③若點(diǎn)E的坐標(biāo)為(0,5),連接PF、PG,設(shè)△PFG的面積為y,直接寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com