【題目】如圖,已知:在中, ,.
(1)按下列步驟用尺規(guī)作圖(保留作圖痕跡,不寫出作法):作的平分線AD,交BC于D;
(2)在(1)中,過點D作,交AB于點E,若CD=4,則BC的長為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1與∠2互補,.
那么.
證明如下:
(已知)
_________(_____________________________________________)
∴(__________________________________)
∵(已知)
∴(等量代換)
∴____________∥___________(__________________________________)
∴(__________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AD∥BC,要判別四邊形ABCD是平行四邊形,還需滿足條件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點,點D,E分別在直角邊AC,BC上,且∠DOE=90°,DE交OC于點P.則下列結(jié)論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AD//BC,AD=16,BC=21,CD=13.
(1)求直線AD和BC之間的距離;
(2)動點P從點B出發(fā),沿射線BC以每秒2個單位長度的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1個單位長度的速度運動,點P、Q同時出發(fā),當(dāng)點Q運動到點D時,兩點同時停止運動,設(shè)運動時間為t秒.試求當(dāng)t為何值時,以P、Q、D、C為頂點的四邊形為平行四邊形?
(3)在(2)的條件下,是否存在點P,使△PQD為等腰三角形?若存在,請直接寫出相應(yīng)的t值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+4m﹣8,
(1)當(dāng)x≤2時,函數(shù)值y隨x的增大而減小,求m的取值范圍.
(2)以拋物線y=x2﹣2mx+4m﹣8的頂點A為一個頂點作該拋物線的內(nèi)接正三角形AMN(M,N兩點在拋物線上),請問:△AMN的面積是與m無關(guān)的定值嗎?若是,請求出這個定值;若不是,請說明理由.
(3)若拋物線y=x2﹣2mx+4m﹣8與x軸交點的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°.公路PQ上A處距離O點240米.如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,
(1)A處是否會受到火車的影響,并寫出理由
(2)如果A處受噪音影響,求影響的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y=與直線y=﹣2x+2交于點A(﹣1,a).
(1)求a,m的值;
(2)求該雙曲線與直線y=﹣2x+2另一個交點B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com