【題目】如圖,正方形ABCD的邊長為2,P為BC上一動點,將DP繞P逆時針旋轉(zhuǎn)90°,得到PE,連接EA,則△PAE面積的最小值為__________.
【答案】
【解析】解:如圖,過E作EF⊥CB于F,EG⊥DA于G.設(shè)BP=a,則PC=2-a,∵EP⊥PD,∴∠EPF+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠EPF=∠PDC.在△EPF和△PDC中,∵∠EPF=∠PDC,∠EFP=∠C=90°,EP=PD,∴△EPF≌△PDC,∴EF=PC=2-a,FP=DC=2,∴FB=2-a.∵∠AGF=∠GFB=∠ABF=90°,∴四邊形GFBA是矩形,∴GA=FB=2-a,GF=AB=2,∴GE=a,∴△PAE的面積=梯形GFPA的面積-△AGE的面積-△EFP的面積
=(2-a+2)×2-×a(2-a)-×(2-a)×2= (a2-2a+4)= ,∵ ,∴當(dāng)a=1時,△PAE的面積的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P從出發(fā),沿所示方向運(yùn)動,每當(dāng)碰到長方形OABC的邊時會進(jìn)行反彈,反彈時反射角等于入射角,當(dāng)點P第2018次碰到長方形的邊時,點P的坐標(biāo)為______.
【答案】
【解析】
根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對應(yīng)的點的坐標(biāo)即可.
解:如圖所示:經(jīng)過6次反彈后動點回到出發(fā)點,
,
當(dāng)點P第2018次碰到矩形的邊時為第337個循環(huán)組的第2次反彈,
點P的坐標(biāo)為.
故答案為:.
【點睛】
此題主要考查了點的坐標(biāo)的規(guī)律,作出圖形,觀察出每6次反彈為一個循環(huán)組依次循環(huán)是解題的關(guān)鍵.
【題型】填空題
【結(jié)束】
15
【題目】為了保護(hù)環(huán)境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經(jīng)調(diào)查,購買一輛A型車比購買一輛B型車多20萬元,購買2輛A型車比購買3輛B型車少60萬元.
請求出a和b;
若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對角線BD上的一點,過點C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)=的圖象經(jīng)過點A(1,0),與反比例函數(shù)=(>0)的圖象相交于點B(m,1).
(1)求m的值和一次函數(shù)的解析式;
(2)結(jié)合圖象直接寫出:當(dāng)>0時,不等式>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“培圣三角形”,如:三個內(nèi)角分別為120、 40、 20的三角形是“培圣三角形”.如圖, MON 60,在射線OM 上找一點 A ,過點 A 作 AB OM 交ON 于點 B ,以 A 為端點作射線 AD , 交線段OB 于點C (規(guī)定0 OAC 90 ).
(1) ABO 的度數(shù)為_____, AOB____(填“是”或“不是”)培圣三角形;
(2)若BAC 60,求證: AOC 為“培圣三角形”;
(3)當(dāng)ABC 為“培圣三角形”時,求OAC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于M,AE⊥BD于E,交CD于N,連AC
(1)求證:AC=AN;
(2)若OM∶OC=3∶5,AB=5,求⊙O的半徑;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(1,0).
(1)在圖1中畫出△ABC關(guān)于y軸對稱的△A1B1C1,直接寫出點C的對應(yīng)點C1的坐標(biāo).
(2)在圖2中,以點O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對應(yīng)邊的比為2:1(畫出一種即可).直接寫出點C的對應(yīng)點C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點,,,…在射線上,點,,,…在射線上,,,,…均為等邊三角形,若,則的邊長為( )
A.8B.16C.24D.32
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com