【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是(
A.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B.以低于80km/h的速度行駛時,行駛相同路程,三輛車中,乙車消耗汽油最少
C.以高于80km/h的速度行駛時,行駛相同路程,丙車比乙車省油
D.以80km/h的速度行駛時,行駛100公里,甲車消耗的汽油量約為10升

【答案】D
【解析】解:A、以相同速度行駛相同路程,三輛車中,甲車燃油效率最高,甲車消耗汽油最少,此選項錯誤; B、以低于80km/h的速度行駛時,行駛相同路程,三輛車中,甲車燃油效率最高,甲車消耗汽油最少,此選項錯誤;
C、以高于80km/h的速度行駛時,行駛相同路程,乙車燃油效率大于丙車燃油效率,乙車比丙車省油,此選項錯誤;
D、由圖象可知當(dāng)速度為80km/h時,甲車的燃油效率為10km/L,即甲車行駛10km時,耗油1L,行駛100km時耗油10L,此選項正確;
故選:D.
根據(jù)耗油效率的定義結(jié)合折線統(tǒng)計圖解答即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 內(nèi)的射線,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,當(dāng)∠BOC 在∠AOD 內(nèi)繞著點 O以 3°/秒的速度逆時針旋轉(zhuǎn) t 秒時,當(dāng)∠AOM:∠DON=3:4 時,則 t=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點A2,4)和B(﹣1,﹣5)兩點.

1)求出該一次函數(shù)的表達式;

2)判斷(﹣4,3)是否在這個函數(shù)的圖象上?

3)求出該函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo)以及與坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計算:(2ab)2+a2(a+2b)(a2b)+a8÷a2

(2)解方程:

(3)先化簡,再求值:÷,其中x=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊單獨完成這項工程需要多少天?

(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育文化用品商店購進籃球和排球共30個,進價和售價如下表,若全部銷售完后共可獲利潤1680元.

籃球

排球

進價(元/

150

120

售價(元/

200

180

(1)請利用二元一次方程組求購進籃球和排球各多少個?

(2)“雙11”快到了,這個體育文化用品商店也準(zhǔn)備搞促銷活動,計劃籃球9折銷售,排球8折銷售,則銷售8個籃球的利潤與銷售幾個排球的利潤相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列推理過程:

已知:如圖,∠1+2=180°,3=B

求證:∠EDG+DGC=180°

證明:∵∠1+2=180°(已知)

1+DFE=180°(   

∴∠2=      

EFAB(   

∴∠3=      

又∵∠3=B(已知)

∴∠B=ADE(   

DEBC(   

∴∠EDG+DGC=180°(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過點C作⊙O的切線,交BA的延長線交于點D,過點B作BE⊥BA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+8(a≠0)與x軸交于A(﹣2,0),B兩點,與y軸交于C點,tan∠ABC=2.
(1)求拋物線的表達式及其頂點D的坐標(biāo);
(2)過點A、B作x軸的垂線,交直線CD于點E、F,將拋物線沿其對稱軸向上平移m個單位,使拋物線與線段EF(含線段端點)只有1個公共點.求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案