【題目】某體育文化用品商店購進籃球和排球共30個,進價和售價如下表,若全部銷售完后共可獲利潤1680元.
籃球 | 排球 | |
進價(元/個) | 150 | 120 |
售價(元/個) | 200 | 180 |
(1)請利用二元一次方程組求購進籃球和排球各多少個?
(2)“雙11”快到了,這個體育文化用品商店也準備搞促銷活動,計劃籃球9折銷售,排球8折銷售,則銷售8個籃球的利潤與銷售幾個排球的利潤相等?
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標xOy中,正比例函數(shù)y=﹣4x的圖象經(jīng)過點A(﹣3,m),點B在x軸的負半軸上,過點A作直線AC∥x軸,交∠AOB的平分線OC于點C,那么點C到直線OA的距離等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB與CD交于點O,OE平分∠AOC,點F為AB上一點(不與點A及O重合),過點F作FG∥OE,交CD于點G,若∠AOD=110°,則∠AFG度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,BC⊥AF于點C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關(guān)系(不考慮點P與點A,D,C重合的情況)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是( )
A.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B.以低于80km/h的速度行駛時,行駛相同路程,三輛車中,乙車消耗汽油最少
C.以高于80km/h的速度行駛時,行駛相同路程,丙車比乙車省油
D.以80km/h的速度行駛時,行駛100公里,甲車消耗的汽油量約為10升
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個三位數(shù),若十位上的數(shù)字是百位數(shù)字與個位數(shù)字的和,我們稱這個三位數(shù)叫“圣誕數(shù)”,并且把這個“圣誕數(shù)”的前兩位組成的兩位數(shù)記為m,后兩位組成的兩位數(shù)記為n,并規(guī)定d=。如一個三位數(shù)385,3+5=8,385是“圣誕數(shù)”,且m=38,n=85,則d==.
(1)寫出最小的“圣誕數(shù)”;
(2)求證:任意一個“圣誕數(shù)”是11的倍數(shù);
(3)求出所有能被8整除的“圣誕數(shù)”,并直接寫出這些“圣誕數(shù)”中d的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點A作AE∥BD,交CD的延長線于點E,過點E作EF⊥BC,交BC延長線于點F.
(1)求證:四邊形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠計劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設(shè)生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com