【題目】如圖,在菱形ABCD中,EF∥AB,對(duì)角線AC交EF于點(diǎn)G,那么與∠BAC相等的角的個(gè)數(shù)有(∠BAC除外)(
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)

【答案】C
【解析】解:∵在菱形ABCD中,EF∥AB, ∴AB∥CD,∠DAB=∠DCB,∠DAC=∠BAC= ∠DAB,∠ACB=∠ACD= ∠BCD,
∴∠DAC=∠ACB=∠ACD=∠BAC,AB∥CD∥EF,
∴∠AGE=∠CGF=∠BAC.
故選C.
【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m,x,y滿足:(x-5)2+|m-2|=0,-3a2·by+1與a2b3是同類項(xiàng),求整式(2x2-3xy+6y2)-m(3x2-xy+9y2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點(diǎn)E,F(xiàn),已知點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).

(1)求k的值;

(2)若點(diǎn)P(x,y)是該直線上的一個(gè)動(dòng)點(diǎn),且在第二象限內(nèi)運(yùn)動(dòng),試寫出OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

(3)探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),OPA的面積為,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點(diǎn),且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點(diǎn)E,若AE=2,CD=2BD.求線段BE的長(zhǎng)和弧DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一節(jié),小麗獨(dú)自一人去老家玩,家住在車站附近的姑姑到車站去接小麗.因?yàn)閾?dān)心小麗下車后找不到路,姑姑一路小跑來到車站,結(jié)果客車晚點(diǎn),休息一陣后,姑姑接到小麗,和小麗一起慢慢的走回了家.下列圖象中,能反映以上過程中小麗姑姑離家的距離s與時(shí)間t的關(guān)系的大致圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),st之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:

①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;

②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;

③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);

④甲的速度是乙速度的一半.

其中,正確結(jié)論的個(gè)數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“好玩三角形”.

(1)請(qǐng)用直尺和圓規(guī)畫一個(gè)“好玩三角形”;
(2)如圖在Rt△ABC中,∠C=90°,tanA= ,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P經(jīng)過的路程為s.
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求 的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過程中,有且只有一個(gè)△APQ能成為“好玩三角形”.請(qǐng)直接寫出tanβ的取值范圍.
(4)(本小題為選做題)
依據(jù)(3)的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖鋼架中,焊上等長(zhǎng)的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計(jì)劃從商店購買同一品牌的鋼筆和文具盒,已知購買一個(gè)文具盒比購買一個(gè)鋼筆多用20元,若用400元購買文具盒和用160元購買鋼筆,則購買文具盒的個(gè)數(shù)是購買鋼筆個(gè)數(shù)的一半.
(1)分別求出該品牌文具盒、鋼筆的定價(jià);
(2)經(jīng)商談,商店給予學(xué)校購買一個(gè)該品牌文具盒贈(zèng)送一個(gè)該品牌鋼筆的優(yōu)惠,如果學(xué)校需要鋼筆的個(gè)數(shù)是文具盒個(gè)數(shù)的2倍還多8個(gè),且學(xué)校購買文具盒和鋼筆的總費(fèi)用不超過670元,那么該學(xué)校最多可購買多少個(gè)該品牌文具盒?

查看答案和解析>>

同步練習(xí)冊(cè)答案