【題目】(9分)已知:如圖,在平面直角坐標系中,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點和點和.
(1)求這兩個函數(shù)的表達式;
(2)觀察圖象,當時,直接寫出自變量的取值范圍;
(3)求的面積.
【答案】(1), ;(2)或;(3)
【解析】試題分析:(1)利用待定系數(shù)法求得反比例函數(shù)解析式,把B的坐標代入反比例函數(shù)解析式求得B的坐標,然后利用待定系數(shù)求得一次函數(shù)解析式;
(2)利用函數(shù)圖象,求時自變量的取值范圍,就是求反比例函數(shù)圖象在上邊時對應(yīng)的的范圍;
(3)求得與軸的交點,然后利用三角形的面積公式求解.
試題解析:(1)∵函數(shù)的圖象過點,
∴,
∴反比例函數(shù)解析式為: ,
又∵點在上,
∴,∴
又∵一次函數(shù)過, 兩點,
∴,
解得.
∴一次函數(shù)解析式為: .
(2)若,則函數(shù)的圖象總在函數(shù)的圖象上方,
∴或.
(3)連接交軸于,
則點, ,
的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中, 的直角邊AC在x軸上, ,反比例函數(shù)的圖象經(jīng)過BC邊的中點.
求這個反比例函數(shù)的表達式;
若與成中心對稱,且的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.
求OF的長;
連接,證明四邊形ABEF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上的A,B,C三點所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點O的位置應(yīng)該在( )
A.點A的左邊
B.點A與點B之間
C.點B與點C之間(靠近點B)
D.點C的右邊
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.
(1)把圓片沿數(shù)軸向左滾動1周,點B到達數(shù)軸上點C的位置,點C表示的數(shù)是 數(shù)(填“無理”或“有理”),這個數(shù)是 ;
(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是 ;
(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,﹣1,+3,﹣4,﹣3
①第幾次滾動后,A點距離原點最近?第幾次滾動后,A點距離原點最遠?
②當圓片結(jié)束運動時,A點運動的路程共有多少?此時點A所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于兩點,交軸于點,點的坐標為,頂點的坐標為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;
(3)在拋物線上是否存在異于的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
第1個等式:a1=,
第2個等式:a2=,
第3個等式:a3=,
…
請解答下列問題:
(1)按以上規(guī)律列出第5個等式:a5= = ;
(2)用含有n的代數(shù)式表示第n個等式:an= = (n為正整數(shù));
(3)求a1+a2+a3+…+a2019的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),拋物線與x軸交于A、B兩點,與y軸交于點C(0,).[圖(2)為解答備用圖]
(1)__________,點A的坐標為___________,點B的坐標為__________;
(2)設(shè)拋物線的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果店以每箱60元新進一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),將稱重記錄如下:
規(guī)格 | ﹣0.2 | ﹣0.1 | 0 | 0.1 | 0.2 | 0.5 |
筐數(shù) | 5 | 8 | 2 | 6 | 8 | 1 |
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=2,N為AB上一點,且AN=1,AD=,∠BAC的平分線交BC于點D,M是AD上的動點,連接BM、MN,則BM+MN的最小值是( )
A. B. 2C. 1D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com