【題目】為了迎接“六一”國際兒童節(jié),某童裝品牌專賣店準(zhǔn)備購進甲、乙兩種童裝,這兩種童裝的進價和售價如下表:

價格

進價(元/件)

m

m+20

售價(元/件)

150

160

如果用5000元購進甲種童裝的數(shù)量與用6000元購進乙種童裝的數(shù)量相同.

(1)m的值;

(2)要使購進的甲、乙兩種童裝共200件的總利潤(利潤=售價﹣進價)不少于8980元,且甲種童裝少于100件,問該專賣店有哪幾種進貨方案?

【答案】(1)m=100(2)兩種方案

【解析】

(1)用總價除以單價表示出購進童裝的數(shù)量,根據(jù)兩種童裝的數(shù)量相等列出方程求解即可;

(2)設(shè)購進甲種童裝x件,表示出乙種童裝(200-x)件,然后根據(jù)總利潤列出一元一次不等式,求出不等式組的解集后,再根據(jù)童裝的件數(shù)是正整數(shù)解答;設(shè)總利潤為W,表示出利潤,求得最值即可.

(1)根據(jù)題意可得:,

解得:m=100,

經(jīng)檢驗m=100是原方程的解;

(2)設(shè)甲種童裝為x件,可得:,

解得:98≤x<100,

因為x取整數(shù),

所以有兩種方案:

方案一:甲98,乙102;

方案二:甲99,乙101;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=C,ADBE于點F,BCBE,點E,D,C在同一條直線上.

(1)判斷ABCD的位置關(guān)系,并說明理由;

(2)若∠ABC=120°,求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OM平分∠AOB,ON平分∠BOC

(1)若∠AOB90°,∠BOC30°,則∠MON_____;

(2)若∠AOBα,∠BOCβ,其它條件不變,則∠MON______

(3)當(dāng)OC運動到∠AOB內(nèi)部時,其余條件不變,請你畫出圖形并猜想∠MON與∠AOB、∠BOC的數(shù)量關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,且ABCDE、FAD上兩點,CEADBFAD.若CEa,BFb,EFc,則AD的長為(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點M,AEBC交于點N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】餃子(如圖1)源于古代的角子,餃子原名“嬌耳”,相傳是我國醫(yī)圣張仲景首先發(fā)明的,距今已有一千八百多年的歷史了.有一句民謠叫“大寒小寒,吃餃子過年.”包餃子時,將面團揉成長條狀,后用刀切或用手揪成一個個小面團,這些小面團就是箕(jì)子(如圖2).搟皮時,將箕子壓扁后搟成圓形面皮,一個面箕子可以搟出一個餃子皮(如圖3),就可以用來包餃子了.

中國北方,尤其是在京、津地區(qū)流行的一種面食﹣合子(如圖4),含有團團圓圓的美好寓意.用兩層餃子皮在中間加一層餡,就可以包成一個合子.北方有風(fēng)俗曰:初一的餃子、初二的面、初三的合子往家轉(zhuǎn).

小亮的媽媽喜愛研究中華美食,自己動手經(jīng)常給家人做出色香味俱佳的食品.媽媽在傳承古人的做法的同時,也進行了加工創(chuàng)新.在每次包餃子臨近結(jié)束時,如果餃子餡少了,餃子皮多了,這時媽媽會停止包餃子,改包合子,這樣既不浪費食材,家人既吃到了餃子又吃到了合子.

這天,媽媽從廚房走到書房,對正在學(xué)習(xí)的小亮說:“媽媽剛才在廚房包餃子,結(jié)果面和多了,做了88個餃子箕,最后包了餃子和合子一共是81個.”

小亮說:“媽媽,我能用剛剛學(xué)到的列一元一次方程解應(yīng)用題的知識和方法得出您包的餃子和合子分別是多少.”

請你寫出小亮同學(xué)的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊直角三角板DEF放置在ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過點BCABC中,∠A=50°,求∠DBA+DCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2m2x+2交y軸于A點,交直線x=4于B點.
(1)拋物線的對稱軸為x=(用含m的代數(shù)式表示);
(2)若AB∥x軸,求拋物線的表達式;
(3)記拋物線在A,B之間的部分為圖象G(包含A,B兩點),若對于圖象G上任意一點P(xp , yp),yp≤2,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案