【題目】如圖,ABCD,且ABCDE、FAD上兩點,CEAD,BFAD.若CEa,BFbEFc,則AD的長為(

A. a+cB. b+cC. ab+cD. a+bc

【答案】D

【解析】

根據(jù)垂直和平行線性質(zhì),證明角相等,證明△ABF≌△CDE(AAS),得到AF=CE=a,BF=DE=b,可得AD=AF+DE-EF=a+b-c.

如圖,記AB與CD的交點為G,BF與CD的交點為H,

CEAD,

BFAD,

CE∥BF,

C=BHG,

ABCD,

BGH=BFA=90

B=B,

BHG=A,

A=C,

AFB=CED=90

AB=CD,

△ABF≌△CDE(AAS),

AF=CE=a,

BF=DE=b,

AD=AF+DE-EF=a+b-c.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=ax+b與雙曲線y= (x>0)交于A(x1 , y1),B(x2 , y2)兩點(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點C.
(1)若A,B兩點坐標(biāo)分別為(1,3),(3,y2),求點P的坐標(biāo).
(2)若b=y1+1,點P的坐標(biāo)為(6,0),且AB=BP,求A,B兩點的坐標(biāo).
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是(  )

A. 當(dāng)AB=BC時,四邊形ABCD是菱形

B. 當(dāng)ACBD時,四邊形ABCD是菱形

C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形

D. 當(dāng)AC=BD時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是定線段OA上的動點,點P從O點出發(fā),沿線段OA運動至點A后,再立即按原路返回至點O停止,點P在運動過程中速度大小不變,以點O為圓心,線段OP長為半徑作圓,則該圓的周長l與點P的運動時間t之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,分別過、點作互相平行的直線,過點的直線分別交直線、于點.

(1);

,直接寫出、的數(shù)量關(guān)系;

如圖1,不垂直,判斷上述結(jié)論是否還成立,并說明理由;

(2)如圖2,,,,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆柋硎鞠旅娴年P(guān)系:

(1)a的一半比a與3的差。 (2)x與5的差小于1.

(3)x與6的和大于-7. (4)8與y的2倍的和是正數(shù).

(5)a的3倍與7的差是負(fù)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A. 平面內(nèi),沒有公共點的兩條線段平行

B. 平面內(nèi),沒有公共點的兩條射線平行

C. 沒有公共點的兩條直線互相平行

D. 互相平行的兩條直線沒有公共點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論: ①∠EBG=45°; ②△DEF∽△ABG;
③SABG=SFGH ④AG+DF=FG.
其中正確的是 . (填寫正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖①,在ABDCAE中,BD=AE,DBA=EACAB=AC,易證:ABD≌△CAE.(不需要證明)

特例探究:如圖②,在等邊ABC中,點D、E分別在邊BCAB上,且BD=AE,ADCE交于點F.求證:ABD≌△CAE

歸納證明:如圖③,在等邊ABC中,點D、E分別在邊CBBA的延長線上,且BD=AEABDCAE是否全等?如果全等,請證明;如果不全等,請說明理由.

拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點OAB邊的垂直平分線與AC的交點,點D、E分別在OBBA的延長線上.若BD=AE,BAC=50°,AEC=32°,求∠BAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案