【題目】(10分)如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過(guò)點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線(xiàn)對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線(xiàn)于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).
【答案】(1)AP=BQ,理由參見(jiàn)解析;(2);(3).
【解析】
試題(1)利用BQ⊥AP和四邊形ABCD是正方形的條件證明△PBA≌△QCB即可;(2)過(guò)點(diǎn)Q作QH⊥AB于H,可得QH=BC=AB=3,∵BP=2PC,∴BP=2,PC=1,運(yùn)用勾股定理可求得AP(即BQ)=,BH=2.由DC∥AB,得∠CQB=∠QBA.由折疊角相等可得∠C′QB=∠CQB,等量代換:∠QBA=∠C′QB,根據(jù)等角對(duì)等邊得:MQ=MB.設(shè)QM=x,則有MB=x,MH=x﹣2.在Rt△MHQ中運(yùn)用勾股定理求得QM;(3)過(guò)點(diǎn)Q作QH⊥AB于H,用(2)的思路方法求出QM的長(zhǎng),也就知道BM的長(zhǎng)了,再減去AB的長(zhǎng)就是AM的長(zhǎng).
試題解析:(1)證明線(xiàn)段相等,通常證明所在的三角形全等,此題利用BQ⊥AP和四邊形ABCD是正方形的條件證明△PBA≌△QCB,證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ(同角的余角相等).∴△PBA≌△QCB(ASA),∴AP=BQ(全等三角形的對(duì)應(yīng)邊相等);(2)過(guò)點(diǎn)Q作QH⊥AB于H,如圖:∵四邊形ABCD是正方形,∴QH=BC=AB=3.∵BP=2PC,BP+PC=3,∴BP=2,PC=1,∵△PBA≌△QCB,∴CQ=BP=2,四邊形QHCB是矩形,∴BH=CQ=2,∵四邊形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折疊角相等可得∠C′QB=∠CQB,∴∠QBA=∠C′QB(等量代換),∴MQ=MB(等角對(duì)等邊).設(shè)QM=x,則有MB=x,MH=x﹣2.在Rt△MHQ中,根據(jù)勾股定理可得x2=(x﹣2)2+32,解得x=.∴QM的長(zhǎng)為;
過(guò)點(diǎn)Q作QH⊥AB于H,如上題的思路可得:四邊形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∵△PBA≌△QCB,∴CQ=BP=m,四邊形QHCB是矩形,∴BH=CQ=m.設(shè)QM=x,則有MB=QM=x,MH=x﹣m.在Rt△MHQ中,根據(jù)勾股定理可得x2=(x﹣m)2+(m+n)2,解得x=m+n+,∴AM=MB﹣AB=m+n+﹣m﹣n=.即AM的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分階段計(jì)費(fèi)的方法按月計(jì)算每戶(hù)家庭的水費(fèi):月用水量不超過(guò)20m3時(shí),按2元/m3計(jì)算;月用水量超過(guò)20m3時(shí),其中的20m3仍按2元/m3計(jì)算,超過(guò)部分按2.6元/m3計(jì)算.設(shè)某戶(hù)家庭月用水量xm3.
月份 | 4月 | 5月 | 6月 |
用水量 | 15 | 17 | 21 |
(1)用含x的式子表示:
當(dāng)0≤x≤20時(shí),水費(fèi)為 元;
當(dāng)x>20時(shí),水費(fèi)為 元.
(2)小花家第二季度用水情況如上表,小花家這個(gè)季度共繳納水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=8cm,AC=6cm,點(diǎn)E是BC的中點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),先以每秒2cm的速度沿A→C運(yùn)動(dòng),然后以1cm/s的速度沿C→B運(yùn)動(dòng).若設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒,那么當(dāng)t=_______,△APE的面積等于8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)13+(﹣15)﹣(﹣23);
(2)23×(﹣5)﹣(﹣3)÷;
(3)﹣14﹣×[2﹣(﹣3)2];
(4)﹣(2y﹣5)+(4+3y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為直線(xiàn)AB上的點(diǎn),OC在∠BOD內(nèi),∠DOC:∠COB=2:3,OE平分∠AOD,∠EOC=78°,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線(xiàn)AB是頂點(diǎn)為B,與y軸交于點(diǎn)A的拋物線(xiàn)y=﹣x2+4x+2的一部分,曲線(xiàn)BC是雙曲線(xiàn)y= 的一部分,由點(diǎn)C開(kāi)始不斷重復(fù)“A﹣B﹣C”的過(guò)程,形成一組波浪線(xiàn),點(diǎn)P(2017,m)與Q(2025,n)均在該波浪線(xiàn)上,過(guò)點(diǎn)P、Q分別作x軸的垂線(xiàn),垂足為M、N,連結(jié)PQ,則四邊形PMNQ的面積為( )
A.72
B.36
C.16
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明的手機(jī)沒(méi)電了,現(xiàn)有一個(gè)只含A,B,C,D四個(gè)同型號(hào)插座的插線(xiàn)板(如圖,假設(shè)每個(gè)插座都適合所有的充電插頭,且被選中的可能性相同),請(qǐng)計(jì)算:
(1)若小明隨機(jī)選擇一個(gè)插座插入,則插入A的概率為;
(2)現(xiàn)小明對(duì)手機(jī)和學(xué)習(xí)機(jī)兩種電器充電,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出兩個(gè)插頭插入插座的所有可能情況,并計(jì)算兩個(gè)插頭插在相鄰插座的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備現(xiàn)有A,B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:經(jīng)調(diào)查:購(gòu)買(mǎi)一臺(tái)A型設(shè)備比購(gòu)買(mǎi)一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型設(shè)備比購(gòu)買(mǎi)3臺(tái)B型設(shè)備少6萬(wàn)元.
A型 | B型 | |
價(jià)格萬(wàn)元臺(tái) | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預(yù)算購(gòu)買(mǎi)污水處理設(shè)備的資金不超過(guò)105萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com