【題目】如圖,分別過第二象限內(nèi)的點(diǎn)軸的平行線,與軸分別交于點(diǎn)與雙曲線分別交于點(diǎn)

下面四個(gè)結(jié)論:

存在無數(shù)個(gè)點(diǎn)使;

存在無數(shù)個(gè)點(diǎn)使

至少存在一個(gè)點(diǎn)使;

至少存在一個(gè)點(diǎn)使

所有正確結(jié)論的序號是________

【答案】①②

【解析】

如圖,設(shè)Cm,),Dn,),則Pn,),利用反比例函數(shù)k的幾何意義得到SAOC3,SBOD3,則可對進(jìn)行判斷;根據(jù)三角形面積公式可對進(jìn)行判斷;通過計(jì)算S四邊形OAPBSACD得到mn的關(guān)系可對對進(jìn)行判斷.

解:如圖,設(shè)Cm,),Dn,),則Pn),

SAOC,SBOD,

SAOCSBOD;所以正確;

SPOA,SPOB

SPOASPOB;所以正確;

SPCD

∴當(dāng)時(shí),即3m2+4mn+3n20,

∵△=42-4×3×3=-200,

∴不存在點(diǎn)使;所以錯(cuò)誤;

S四邊形OAPB=﹣n×SACD,

∴當(dāng)時(shí),即m2mn2n20,

m2n(舍去)或m=﹣n,此時(shí)P點(diǎn)為無數(shù)個(gè),所以④正確.

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段 AB 先向右平移 5 個(gè)單位,再將所得線段繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn) 90°,得到線段 AB ,則點(diǎn) B 的對應(yīng)點(diǎn) B′的坐標(biāo)是(

A.-4 , 1B. 1, 2C.4 ,- 1D.1 ,- 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,D為邊AC的延長線上一點(diǎn)(),平移線段BC,使點(diǎn)C移動到點(diǎn)D,得到線段ED,MED的中點(diǎn),過點(diǎn)MED的垂線,交BC于點(diǎn)F,交AC于點(diǎn)G

1)依題意補(bǔ)全圖形;

2)求證:;

3)連接DF并延長交AB于點(diǎn)H,用等式表示線段AHCG的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過點(diǎn)和點(diǎn),函數(shù)圖象最低點(diǎn)的縱坐標(biāo)為.直線的解析式為

求二次函數(shù)的解析式;

直線沿軸向右平移,得直線與線段相交于點(diǎn),與軸下方的拋物線相交于點(diǎn),過點(diǎn)軸于點(diǎn),把沿直線折疊,當(dāng)點(diǎn)恰好落在拋物線上點(diǎn)時(shí)(求直線的解析式;

的條件下,軸交于點(diǎn),把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,P上的動點(diǎn),當(dāng)為等腰三角形時(shí),求符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以等邊ABC的邊BC為直徑作⊙O,分別交AB,AC于點(diǎn)D,E,過點(diǎn)DDFACAC于點(diǎn)F.

(1)求證:DF是⊙O的切線;

2)若等邊ABC的邊長為8,求由、DF、EF圍成的陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)上,點(diǎn)上一動點(diǎn),且與點(diǎn)分別位于直徑的兩側(cè),,過點(diǎn)的延長線于點(diǎn);

1)當(dāng)點(diǎn)運(yùn)動到什么位置時(shí),恰好是的切線?畫出圖形并加以說明.

2)若點(diǎn)與點(diǎn)關(guān)于直徑對稱,且,畫出圖形求此時(shí)的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是12,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.

1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是__________;

2)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字(不放回),再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以RtABC的斜邊BC為一邊在ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件8元,出廠價(jià)為每件10元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500

1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?

2)設(shè)李明獲得的利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?

3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤不低于3410元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

同步練習(xí)冊答案