【題目】20173月起,成都市中心城區(qū)居民用水實(shí)行以戶為單位的三級(jí)階梯收費(fèi)辦法:

I級(jí):居民每戶每月用水18噸以內(nèi)含18噸每噸收水費(fèi)a元;

第Ⅱ級(jí):居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級(jí)標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)b元;

第Ⅲ級(jí):居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級(jí)標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)c元.

設(shè)一戶居民月用水x噸,應(yīng)繳水費(fèi)為y元,yx之間的函數(shù)關(guān)系如圖所示

1)根據(jù)圖象直接作答:a   ,b   

2)求當(dāng)x≥25時(shí)yx之間的函數(shù)關(guān)系;

3)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①,假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費(fèi),請(qǐng)你根據(jù)居民每戶月用水量的大小設(shè)計(jì)出對(duì)居民繳費(fèi)最實(shí)惠的方案.(寫出過程)

【答案】134;(2)當(dāng)x≥25時(shí),yx之間的函數(shù)關(guān)系式為y6x68;(3)當(dāng)x34時(shí),選擇繳費(fèi)方案①更實(shí)惠;當(dāng)x34時(shí),選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)x34時(shí),選擇繳費(fèi)方案②更實(shí)惠

【解析】

1)根據(jù)單價(jià)=總價(jià)÷數(shù)量可求出a,b的值,此問得解;

2)觀察函數(shù)圖象,找出點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出當(dāng)x≥25時(shí)yx之間的函數(shù)關(guān)系;

3)由總價(jià)=單價(jià)×數(shù)量可找出選擇繳費(fèi)方案②需交水費(fèi)y(元)與用水?dāng)?shù)量x(噸)之間的函數(shù)關(guān)系式,分別找出當(dāng)6x684x,6x684x,6x684x時(shí)x的取值范圍(x的值),選擇費(fèi)用低的方案即可得出結(jié)論.

1a54÷183,

b=(8254÷2518)=4

故答案為:3;4

2)設(shè)當(dāng)x≥25時(shí),yx之間的函數(shù)關(guān)系式為ymx+nm≠0),

將(2582),(35,142)代入ymx+n,得:,

解得:

∴當(dāng)x≥25時(shí),yx之間的函數(shù)關(guān)系式為y6x68

3)根據(jù)題意得:選擇繳費(fèi)方案②需交水費(fèi)y(元)與用水?dāng)?shù)量x(噸)之間的函數(shù)關(guān)系式為y4x

當(dāng)6x684x時(shí),x34;

當(dāng)6x684x時(shí),x34;

當(dāng)6x684x時(shí),x34

∴當(dāng)x34時(shí),選擇繳費(fèi)方案①更實(shí)惠;當(dāng)x34時(shí),選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)x34時(shí),選擇繳費(fèi)方案②更實(shí)惠.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個(gè)方程為鳳凰方程.已知是鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列正確的是( 。

A.a=cB.a=bC.b=cD.a=b=c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、BE對(duì)應(yīng)),并且點(diǎn)MN都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)M、N的坐標(biāo);

③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個(gè)三角形為好玩三角形.若RtABC是好玩三角形,且∠C90°BC≥AC,則sinB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F為對(duì)角線BD上的兩點(diǎn),且∠DAE=∠BCF

求證:(1AECF;

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1O過正方形ABCD的頂點(diǎn)A、D且與邊BC相切于點(diǎn)E,分別交AB、DC于點(diǎn)M、N.動(dòng)點(diǎn)P在⊙O或正方形ABCD的邊上以每秒一個(gè)單位的速度做連續(xù)勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為x,圓心OP點(diǎn)的距離為y,圖2記錄了一段時(shí)間里yx的函數(shù)關(guān)系,在這段時(shí)間里P點(diǎn)的運(yùn)動(dòng)路徑為( )

A. D點(diǎn)出發(fā),沿弧DA→AM→線段BM→線段BC

B. B點(diǎn)出發(fā),沿線段BC→線段CN→ND→DA

C. A點(diǎn)出發(fā),沿弧AM→線段BM→線段BC→線段CN

D. C點(diǎn)出發(fā),沿線段CN→ND→DA→線段AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,,點(diǎn)是邊上一點(diǎn),過點(diǎn)分別作的垂線,過點(diǎn)的垂線,得到矩形和矩形,則這兩個(gè)矩形的面積之和的最大值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)N04),動(dòng)點(diǎn)MA點(diǎn)以每秒1個(gè)單位的速度勻速沿x軸向左移動(dòng).

1)點(diǎn)A的坐標(biāo):_____;點(diǎn)B的坐標(biāo):_____;

2)求NOM的面積SM的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

3)在y軸右邊,當(dāng)t為何值時(shí),NOMAOB,求出此時(shí)點(diǎn)M的坐標(biāo);

4)在(3)的條件下,若點(diǎn)G是線段ON上一點(diǎn),連結(jié)MG,MGN沿MG折疊,點(diǎn)N恰好落在x軸上的點(diǎn)H處,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案