【題目】如圖1,已知:在矩形ABCD中,ABcmAD9cm,點OA點出發(fā)沿ADacm/s的速度移向點D移動,以O為圓心,2cm長為半徑作圓,交射線ADM(點M在點O右側(cè)).同時點EC點出發(fā)沿CDcm/s的速度移向點D移動,過E作直線EFBDBCF,再把CEF沿著動直線EF對折,點C的對應點為點G 若在整過移動過程中EFG的直角頂點G能與點M重合.設運動時間為t0t≤3)秒.

1)求a的值;

2)在運動過程中,

①當直線FG與⊙O相切時,求t的值;

②是否存在某一時刻t,使點G恰好落在⊙O上(異于點M)?若存在,請直接寫出t的值;若不存在,請說明理由.

【答案】1a=2cm/s;(2)①t=ss時,直線FG與⊙O相切;②t=s時,點G在⊙O上.

【解析】

1)如圖1中,當點GAD上時,首先證明∠FEC=FEG=GED=60°,由EC=EG=t,DE=t,可得t+t=3,解方程即可;
2)①如圖2中,作GQADQ,GRCDR,QG的延長線交BCP,FG的延長線交ADT,解直角三角形求出TD,然后分情況討論,分別列出方程求出相切時的時間;
②如圖5中,作GNAD,則DN=t,ON=DN-OD=t-9-2t=t-9NG= ,OG=2,根據(jù)OG2=ON2+NG2,構(gòu)建方程即可.

解:(1)如圖1中,當點GAD上時.

∵四邊形ABCD是矩形,
∴∠BAD=90°,
AB=3,AD=9,
tanBDA= ,
∴∠ADB=30°
BCAD,EFBD,
∴∠CFE=CBD=ADB=30°
∴∠FEC=FEG=60°,
∴∠GED=60°,
CE=EG=t,
RtGED中,DE=t,
t+t=3,
t=2
CE=EG=2,DE=,DG=3,AG=6,
∵在整過移動過程中EFG的直角頂點G能與點M重合,
2a+2=6,
a=2cm/s
2)①如圖2中,作GQADQ,GRCDRQG的延長線交BCP,FG的延長線交ADT

由題意CE=EG=t,ER=t,QD=PC=RG=t,QG=DR=3-t-t=3-t,
RtGQT中,∵∠TGQ=30°,
QT=QGtan30°=3-t,
TD=t-3-t=3t-3,
如圖3中,當⊙OFG相切于點N時,易知OA=2t,OT=,TD=3t-3

則有2t++3t-3=9,
解得t=
如圖4中,當⊙O再次與FG相切時.

OA+DT-OT=AD,可得2t+3t-3-=9,
解得t=
綜上所述,t=ss時,直線FG與⊙O相切
②如圖5中,當點G在⊙O上時,

GNAD,則DN=t,ON=DN-OD=t-9-2t=t-9,NG= ,OG=2,
OG2=ON2+NG2,
∴(t-92+( 2=4,
整理得:19t2-90t+104=0
∴(t-2)(19t-52=0
t= t=2(舍棄)
t=s時,點G在⊙O上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=3,BC=5,P是線段BC上的一動點.

1)請用不帶刻度的直尺和圓規(guī),按下列要求作圖:(不要求寫作法,但保留作圖痕跡),在CD邊上確定一點E,使得∠DEP+APB=180°;

2)在(1)的條件下,點P從點B移動到點C的過程中,對應點E隨之運動,則移動過程中點E經(jīng)過的總路程長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半徑為1,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,斜坡AB10米,按圖中的直角坐標系可用表示,點AB分別在x軸和y軸上,且.在坡上的A處有噴灌設備,噴出的水柱呈拋物線形落到B處,拋物線可用表示.

1)求拋物線的函數(shù)關系式(不必寫自變量取值范圍);

2)求水柱離坡面AB的最大高度;

3)在斜坡上距離A2米的C處有一顆3.5米高的樹,水柱能否越過這棵樹?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本學期開學初,學校體育組對九年級某班50名學生進行了跳繩項目的測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.

根據(jù)統(tǒng)計圖解答下列問題:

1)本次測試的學生中,得4分的學生有多少人?

2)本次測試的平均分是多少分?

3)通過一段時間的訓練,體育組對該班學生的跳繩項目進行了第二次測試,測得成績的最低分為3分.且得4分和5分的人數(shù)共有45人,平均分比第一次提高了0.8分,問第二次測試中得4分、5分的學生各有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是某班同學隨機投擲一枚硬幣的試驗結(jié)果.

拋擲次數(shù)

50

100

150

200

250

300

350

400

450

500

“正面向上”次數(shù)

22

52

68

101

116

147

160

187

214

238

“正面向上”頻率

0.44

0.52

0.45

0.51

0.46

0.49

0.46

0.47

0.48

0.48

下面有三個推斷:

①表中沒有出現(xiàn)“正面向上”的頻率是0.5的情況,所以不能估計“正面向上”的概率是0.5;

②這些次試驗投擲次數(shù)的最大值是500,此時“正面向上”的頻率是0.48,所以“正面向上”的概率是0.48;

③投擲硬幣“正面向上”的概率應該是確定的,但是大量重復試驗反映的規(guī)律并非在每一次試驗中都發(fā)生;

其中合理的是__________(填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次數(shù)學競賽中有5道選擇題,每題1分,每道題在、三個選項中,只有一個是正確的.下表是甲、乙、丙、丁四位同學每道題填涂的答案和這5道題的得分:

第一題

第二題

第三題

第四題

第五題

得分

4

3

2

1)則甲同學錯的是第 題;

2)丁同學的得分是 ;

3)如果有一個同學得了1分,他的答案可能是 (寫出一種即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)在正方形中,點邊上一動點,連接,作,重足為,交.

1)求證:

2)連接,若平分,如圖(2),求證:點中點:

3)在(2)的條件下,連接,如圖(3),求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,已知格點四邊形ABCD(頂點是網(wǎng)格線的交點)和格點O

1)將四邊形ABCD先向左平移4個單位長度,再向下平移6個單位長度,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1,(點A,B,CD的對應點分別為點A1,B1C1,D1);

2)將四邊形ABCD繞點O逆時針旋轉(zhuǎn)90°,得到四邊形A2B2C2D2,畫出旋轉(zhuǎn)后的四邊形A2B2C2D2(點A、B,CD的對應點分別為點A2,B2,C2,D2);

3)填空:點C2A1D1的距離為_______

查看答案和解析>>

同步練習冊答案