【題目】等腰△ABC 中,ABAC,∠BAC=120°,點(diǎn) P 為平面內(nèi)一點(diǎn).

(1)如圖 1,當(dāng)點(diǎn) P 在邊 BC 上時(shí),且滿(mǎn)足∠APC=120°,求的值;

(2)如圖 2,當(dāng)點(diǎn) P 在△ABC 的外部,且滿(mǎn)足∠APC+∠BPC=90°,求證:BPAP

(3)如圖 3,點(diǎn) P 滿(mǎn)足∠APC=60°,連接 BP,若 AP=1,PC=3,直接寫(xiě)出BP 的長(zhǎng)度.

【答案】(1)2;(2)見(jiàn)解析;(3) 2

【解析】

(1)由∠BAC=120°,AB=AC,推出∠B=C=30°,由∠APC=120°,推出∠PAC=C=30°,推出PC=PA,PAB=90°,推出PB=2PA,可得 PB=2PC解決問(wèn)題;

如圖 2中,將線(xiàn)段AP繞點(diǎn) A順時(shí)針旋轉(zhuǎn)120°得到線(xiàn)段AF,連接PF, BF,BF PC于點(diǎn) H.想辦法證明PB=PF即可解決問(wèn)題;

(3)分兩種情形分別求解即可解決問(wèn)題.

(1)如圖1中,∵∠BAC=120°,AB=AC,

∴∠B=C=30°,

∵∠APC=120°,

∴∠PAC=C=30°,

PC=PA,PAB=90°,

PB=2PA,

PB=2PC,

=2;

(2)如圖2中,將線(xiàn)段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°得到線(xiàn)段AF,連接PF,BF,BFPC于點(diǎn)H,

∵∠BAC=PAF=120°,

∴∠PAC=BAF,

AB=AC,AF=AP,

∴△ABF≌△ACP(SAS),

APC=AFB,

設(shè)∠APC=α,則∠AFB=α,PFB=30°+α,BPC=90°﹣α

∵∠PHB=HPF+PFH=(30°﹣α)+(30°+α)=60°,

∴∠PBH=180°﹣(90°﹣α﹣60°)=30°+α,

∴∠PBF=PFB,

PB=PF,

PAF中,易知PF=PA,

PB=PA;

(3)①如圖3﹣1中,當(dāng)點(diǎn)PABC外部時(shí),將線(xiàn)段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn) 120°得到線(xiàn)段AF,連接PF,BF,

ABF≌△ACP(SAS),

∴∠AFB=APC=60°,BF=PC=3,

∵∠AFP=30°,

∴∠BFP=90°,

PA=AF=1,PAF=120°,

PF=,

PB==2;

②如圖3﹣2中,當(dāng)點(diǎn)PABC內(nèi)部時(shí),將線(xiàn)段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120° 得到AH,連接PH,HC.作HMPCM,

BAP≌△CAH(SAS),

PB=CH,

∵∠PAH+APC=120°+60°=180°,

AHPC,

∴∠AHP=HPM=30°,

HM=PH=

PM=HM=,

PC=3,

CM=PM=

HMPC,

HC=PH=

PB=,

綜上所述,滿(mǎn)足條件的 PB 的值為 2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),且BCEC,CFBEAB于點(diǎn)F,PEB延長(zhǎng)線(xiàn)上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BCFB;④PFPC.其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(04),△AOB為等邊三角形,Px軸負(fù)半軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線(xiàn)段AP為一邊在其右側(cè)作等邊三角形△APQ

1)求點(diǎn)B的坐標(biāo);

2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請(qǐng)說(shuō)明理由;

3)連接OQ,當(dāng)OQAB時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)某中學(xué)數(shù)學(xué)活動(dòng)小組為了調(diào)查居民的用水情況,從某社區(qū)的戶(hù)家庭中隨機(jī)抽取了戶(hù)家庭的月用水量,結(jié)果如下表所示:

月用水量(噸)

戶(hù)數(shù)

1)求這戶(hù)家庭月用水量的平均數(shù)、眾數(shù)和中位數(shù);

2)根據(jù)上述數(shù)據(jù),試估計(jì)該社區(qū)的月用水量;

3)由于我國(guó)水資源缺乏,許多城市常利用分段計(jì)費(fèi)的辦法引導(dǎo)人們節(jié)約用水,即規(guī)定每個(gè)家庭的月基本用水量為(噸),家庭月用水量不超過(guò)(噸)的部分按原價(jià)收費(fèi),超過(guò)(噸)的部分加倍收費(fèi).你認(rèn)為上述問(wèn)題中的平均數(shù)、眾數(shù)和中位數(shù)中哪一個(gè)量作為月基本用水量比較合理?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一旅游團(tuán)來(lái)到某旅游景點(diǎn),看到售票處旁邊的公告欄上寫(xiě)著:①一次購(gòu)買(mǎi)10張以下(含10張),每張門(mén)票180元.②一次購(gòu)買(mǎi)10張以上,超過(guò)10張的部分,每張門(mén)票6折優(yōu)惠.

1)若旅游團(tuán)人數(shù)為9人,門(mén)票費(fèi)用是多少?若旅游團(tuán)人數(shù)為30人,門(mén)票費(fèi)用又是多少?

2)設(shè)旅游團(tuán)人數(shù)為x人,寫(xiě)出該旅游團(tuán)門(mén)票費(fèi)用y(元)與人數(shù)x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】再讀教材:

寬與長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱(chēng)的美感.世界各國(guó)許多著名的建筑.為取得最佳的視覺(jué)效果,都采用了黃金矩形的設(shè)計(jì),下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)

第一步,在矩形紙片一端.利用圖①的方法折出一個(gè)正方形,然后把紙片展平.

第二步,如圖②.把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平.

第三步,折出內(nèi)側(cè)矩形的對(duì)角線(xiàn) AB,并把 AB折到圖③中所示的AD處,

第四步,展平紙片,按照所得的點(diǎn)D折出 DE,使 DEND,則圖④中就會(huì)出現(xiàn)黃金矩形,

問(wèn)題解決:

(1)圖③中AB=________(保留根號(hào));

(2)如圖③,判斷四邊形 BADQ的形狀,并說(shuō)明理由;

(3)請(qǐng)寫(xiě)出圖④中所有的黃金矩形,并選擇其中一個(gè)說(shuō)明理由.

(4)結(jié)合圖④.請(qǐng)?jiān)诰匦?/span> BCDE中添加一條線(xiàn)段,設(shè)計(jì)一個(gè)新的黃金矩形,用字母表示出來(lái),并寫(xiě)出它的長(zhǎng)和寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水晶廠生產(chǎn)的水晶工藝品非常暢銷(xiāo),某網(wǎng)店專(zhuān)門(mén)銷(xiāo)售這種工藝品.成本為30元/件,每天銷(xiāo)售y(件)與銷(xiāo)售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,當(dāng)x=40時(shí),y=300;當(dāng)x=55時(shí),y=150.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天工藝品的銷(xiāo)售量不低于240件,當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷(xiāo)售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該工藝品銷(xiāo)售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AB=CDAD=BC,點(diǎn)ECD上,連接AE并延長(zhǎng),交BC的延長(zhǎng)線(xiàn)于F

1)求證:ADE∽△FCE;

2)若AB=4,AD=6CF=2,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ΔABC中,AB=AC,BC=12,BAC=120°,AB的垂直平分線(xiàn)交BC邊于點(diǎn)E,AC的垂直平分線(xiàn)交BC邊于點(diǎn)N.

(1)AEN的周長(zhǎng);

(2)判斷ΔAEN的形狀并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案