【題目】五水共治辦公室在一次巡查時測量一排水管的排水情況,如圖,水平放置的圓柱形排水管的截面為⊙O,半徑是10cm,有水部分弓形的高為5cm,

1)求AB的長;

2)求截面中有水部分弓形的面積。(保留根號及π

【答案】1;(2)截面中有水部分弓形的面積為cm2.

【解析】

(1)作OD⊥AB于點D,交圓O于點C,連接OA,OB,根據(jù)垂徑定理求出AD的長,繼而求得AB的長;

(2)利用垂徑定理以及解直角三角形求出∠BOA的度數(shù),根據(jù)=即可得出結(jié)論.

1)解:過點OODAB于點D,交圓O于點C,連接OA,OB,

AB=2AD,

OA=OC=10,CD=5,

OD=OC-CD=10-5=5,

2)解:∵OA=OB,ODAB,

∴∠AOB=2AOD,

∴∠AOD=60°

∴∠AOB=2×60°=120°.

=S扇形AOB-SAOB=

答:截面中有水部分弓形的面積為cm2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,把繞點順時針旋轉(zhuǎn)得到,若點恰好落在邊上處,則______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=4,BC=6,B=60°,將ABC沿射線BC的方向平移,得到A′B′C′,再將A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為( 。

A.4,30° B.2,60° C.1,30° D.3,60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,對稱軸是直線x=1.下列結(jié)論:①abc<0;②3a+c>0;③(a+c)2b2<0;④a+bm(am+b)(m為實數(shù)).其中結(jié)論正確的有_______.(填所以正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的邊BC= ,且ABC內(nèi)接于半徑為2的⊙O,則∠A的度數(shù)是(

A.60°B.120°C.60°120°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( 。

A. 當(dāng)AB=BC時,四邊形ABCD是菱形

B. 當(dāng)ACBD時,四邊形ABCD是菱形

C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形

D. 當(dāng)AC=BD時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,),以原點O為中心,將點A順時針旋轉(zhuǎn)150°得到點A′,則點A′的坐標(biāo)為( )

A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧,分別交ABAC于點MN,再分別以點M,N為圓心,大于MN長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長,交BC于點D,則下列四個結(jié)論中:①AD是∠BAC的平分線;②∠ADC=60°;③點DAB的中垂線上;④SDACSABC=13.正確的有(

A.只有①②③B.只有①②④C.只有①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一塊等邊三角形鋼板ABC的邊長為60厘米.

1)用尺規(guī)作圖能從這塊鋼板上截得的最大圓(作出圖形,保留作圖痕跡),并求出此圓的半徑.

2)用一個圓形紙板完全覆蓋這塊鋼板,這個圓的最小半徑是多少?

查看答案和解析>>

同步練習(xí)冊答案