【題目】如圖,在四邊形ABCD中,ABCD,且AB2CDE,F分別是AB,BC的中點,EFBD交于點H

1)求證:四邊形DEBC是平行四邊形;

2)若BD6,求DH的長.

【答案】1)見解析;(2DH4

【解析】

1)由AB=2CD,EAB的中點得出DC=BE,再結合ABCD即可得證;

2)先證EDM∽△FBM,由BC=DE,FBC的中點得出=2,繼而知DH=2HB,結合DH+HB=6可得答案.

1)∵EAB的中點,

AB2EB

AB2CD,

DCBE,

又∵ABCD,即DCBE,

∴四邊形BCDE是平行四邊形.

2)∵四邊形BCDE是平行四邊形,

BCDE,BCDE

∴△EDM∽△FBM,

BCDE,FBC的中點,

BFBCDE,

2,

DH2HB

又∵DH+HB6,

DH4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(x-2)(x-3)=m有實數(shù)根x1x2,且x1x2.

(1)求m的取值范圍;

(2)如果這個方程的兩個實根分別為x1=α,x2,且αβ,當m>0時,試比較α,β,2,3的大小,并用“<”連接;

(3)求二次函數(shù)y=(xx1)(xx2)+m的圖像與x軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在等腰直角三角形中,,D,E分別在上,且,此時有,

(1)如圖①中 繞點A旋轉至如圖②時上述結論是否仍然成立?若成立,請證明;若不成立,請說明理由.

(2)將圖①中的繞點A旋轉至DE與直線AC垂直,直線BDCE于點F,若,,請畫出圖形,并求出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市304國道通遼至霍林郭勒段在修建過程中經過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數(shù),參考數(shù)據(jù)≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個直角三角形紙片OAB,其中AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D

1)若折疊后使點B與點A重合,求點C的坐標;

2)若折疊后點B落在邊OA上的點為B,設OB′=x,OC=y,試寫出y關于x的函數(shù)解析式,并確定y的取值范圍;

3)若折疊后點B落在邊OA上的點為B,且使BD//OB,求此時點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算: 2sin45°+2π01;

2先化簡,再求值 a2b2),其中a=,b=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O是邊長為2的正方形ABCD的中心.函數(shù)y=(xh2的圖象與正方形ABCD有公共點,則h的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點A、B的橫坐標分別為﹣3、1,與y軸交于點C,下面四個結論:①16a+4b+c<0;②P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③c=﹣3a;④△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結論的序號全部填在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點A對稱點D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形,類似地,對多邊形進行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.

(1)將ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段________________;S矩形AEFG:S□ABCD=__________

(2)ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長;

(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請你幫助畫出一種疊合正方形的示意圖,并求出AD、BC的長.

查看答案和解析>>

同步練習冊答案