【題目】如圖,在⊙O中,C,D分別為半徑OB,弦AB的中點,連接CD并延長,交過點A的切線于點E.
(1)求證:AE⊥CE.
(2)若AE=2,sin∠ADE=,求⊙O半徑的長.
【答案】(1)見解析;(2)
【解析】
(1)連接OA,如圖,利用切線的性質(zhì)得∠OAE=90°,再證明CD為△AOB的中位線得到CD∥OA.則可判斷AE⊥CE;
(2)連接OD,如圖,利用垂徑定理得到OD⊥AB,再在Rt△AED中利用正弦定義計算出AD=3,接著證明∠OAD=∠ADE.從而在Rt△OAD中有sin∠OAD=,設(shè)OD=x,則OA=3x,利用勾股定理可計算出AD=2x,從而得到2x=3,然后解方程求出x即可得到⊙O的半徑長.
(1)證明:如圖, 連接OA
∵AE是⊙O的切線,
∴AE⊥AO
∴∠OAE=90°
∵C,D分別為半徑OB,弦AB的中點,
∴CD為△AOB的中位線
∴CD∥OA.
∴∠E=90°.
∴AE⊥CE;
(2)解:如圖,連接OD,
∵AD=BD,
∴OD⊥AB,
∴∠ODA=90°
在Rt△AED中,sin∠ADE=,
∴AD=6
∵CD∥OA,
∴∠OAD=∠ADE.
在Rt△OAD中,sin∠OAD=
設(shè)OD=x,則OA=3x,
∴
即,解得x=
∴OA=3x=,
即OB長為
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學實踐小組想利用鏡子的反射測量池塘邊一棵樹的高度AB.測量和計算的部分步驟如下:
①如圖,樹與地面垂直,在地面上的點C處放置一塊鏡子,小明站在BC的延長線上,當小明在鏡子中剛好看到樹的頂點A時,測得小明到鏡子的距離CD=2米,小明的眼睛E到地面的距離ED=1.5米;
②將鏡子從點C沿BC的延長線向后移動10米到點F處,小明向后移動到點H處時,小明的眼睛G又剛好在鏡子中看到樹的頂點A,這時測得小明到鏡子的距離FH=3米;
③計算樹的高度AB;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,. 點是平面內(nèi)不與點重合的任意一點, 連接,將線段繞點逆時針旋轉(zhuǎn)得到線段,連接
(1)動手操作
如圖1,當時,我們通過用 刻度尺和量角器度量發(fā)現(xiàn):
的值是;直線與直線相交所成的較小角的度數(shù)是;
請證明以上結(jié)論正確.
(2)類比探究
如圖2,當時,請寫出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐 在中,,點為斜邊上的動點(不與點重合).
(1)操作發(fā)現(xiàn): 如圖①,當時,把線段繞點逆時針旋轉(zhuǎn)得到線段,連接.
①的度數(shù)為________;
②當________時,四邊形為正方形;
(2)探究證明: 如圖②,當時,把線段繞點逆時針旋轉(zhuǎn)后并延長為原來的兩倍, 記為線段,連接.
①在點的運動過程中,請判斷與的大小關(guān)系,并證明;
②當時,求證:四邊形為矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的,稱為第次操作,折痕到的距離記為;還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第次操作,折痕到的距離記為;按上述方法不斷操作下去…,經(jīng)過第次操作后得到的折痕,到的距離記為,若,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品原價為100元,第一次漲價,第二次在第一次的基礎(chǔ)上又漲價,設(shè)平均每次增長的百分數(shù)為x,那么x應滿足的方程是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點B落在點E處,AE與DC的交點為O,連接DE.
(1)求證:△ADE≌△CED;
(2)求證:DE∥AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,將點 A(2,4)向下平移 2 個單位得到點 C,反比例函數(shù)y (m≠0)的圖象經(jīng)過點 C,過點 C 作 CB⊥x 軸于點 B
(1)求 m 的值;
(2)一次函數(shù) y=kx+b(k<0)的圖象經(jīng)過點 C,交 x 軸于點 D, 線段 CD,BD,BC 圍成的區(qū)域(不含邊界)為 G; 若橫、縱坐標都是整數(shù)的點叫做整點
①b=3 時,直接寫出區(qū)域 G 內(nèi)的整點個數(shù)
②若區(qū)域 G 內(nèi)沒有整點,結(jié)合函數(shù)圖象,確定 k 的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com