【題目】如圖,在直角坐標(biāo)系的坐標(biāo)軸上按如下規(guī)律取點:軸正半軸上,軸正半軸上,軸負(fù)半軸上,軸負(fù)半軸上,軸正半軸上,......,且......,設(shè)......,有坐標(biāo)分別為,......,

1)當(dāng)時,求的值;

2)若,求的值;

3)當(dāng)時,直接寫出用含為正整數(shù))的式子表示軸負(fù)半軸上所取點.

【答案】1,(2;(3

【解析】

1)根據(jù)題意,分別的坐標(biāo)依次寫出,便能知道的值;

2)由(1)中的規(guī)律能夠得到的關(guān)系,進而可表示出,再利用求得的值;

3)先依次探究軸負(fù)半軸上所取點的坐標(biāo)規(guī)律,進而得到答案.

解:∵,

,

2)由(1)可知,

,

當(dāng)時,,

;

3)由題意可知,

當(dāng)時,x軸負(fù)半軸上的點的坐標(biāo)依次是,……

也就是說x軸負(fù)半軸上的點的縱坐標(biāo)為0,橫坐標(biāo)依次減小4,

x軸負(fù)半軸上的點的坐標(biāo)可以表示為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,在△ABC中,當(dāng)DEBC時可以得到三組成比例線段:① ;② ;③ .反之,當(dāng)對應(yīng)線段程比例時也可以推出DEBC

理解運用:三角形的內(nèi)接四邊形是指頂點在三角形各邊上的四邊形.

1)如圖2,已知矩形DEFG是△ABC的一個內(nèi)接矩形,將矩形DEFG沿CB方向向左平移得矩形PBQH,其中頂點D、EF、G的對應(yīng)點分別為P、B、QH,在圖2中畫出平移后的圖形;

2)在(1)所得的圖形中,連接CH并延長交BP的延長線于點R,連接AR.求證:ARBC

3)如圖3,某小區(qū)有一塊三角形空地,已知△ABC空地的邊AB=400米,BC=600米,∠ABC=45°;準(zhǔn)備在△ABC內(nèi)建一個內(nèi)接矩形廣場DEFG(點EF在邊BC上,點D、G分別在邊ABAC上),三角形其余部分進行植被綠化,按要求欲使矩形DEFG的對角線EG最短,請在備用圖中畫出使對角線EG最短的矩形.并求出對角線EG的最短距離(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作OBC邊于點D,過點DDEAB于點EED、AC的延長線交于點F.

(1)求證:EFO的切線;

(2)EB=6,且sinCFD=,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線yx+4與拋物線y=﹣x2+bx+cb,c是常數(shù))交于A、B兩點,點Ax軸上,點By軸上.設(shè)拋物線與x軸的另一個交點為點C

1)求該拋物線的解析式;

2P是拋物線上一動點(不與點A、B重合),

①如圖2,若點P在直線AB上方,連接OPAB于點D,求的最大值;

②如圖3,若點Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點EF恰好落在y軸上,直接寫出對應(yīng)的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,只改變正方形的形狀,得到四邊形,且,則四邊形與正方形的面積的比是( 。

A.1:1B.2:3C.:2D.3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=3,BC=4,將矩形ABCD沿對角線BD折疊點C落在點E的位置,則AE的長度為(  )

A.B.C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.

(1)求拋物線的解析式;

(2)當(dāng)點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當(dāng)相似時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品原價為100元,第一次漲價,第二次在第一次的基礎(chǔ)上又漲價,設(shè)平均每次增長的百分?jǐn)?shù)為x,那么x應(yīng)滿足的方程是  

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

同步練習(xí)冊答案