【題目】如圖,在直角坐標(biāo)系的坐標(biāo)軸上按如下規(guī)律取點:在軸正半軸上,在軸正半軸上,在軸負(fù)半軸上,在軸負(fù)半軸上,在軸正半軸上,......,且......,設(shè)......,有坐標(biāo)分別為,......,.
(1)當(dāng)時,求的值;
(2)若,求的值;
(3)當(dāng)時,直接寫出用含為正整數(shù))的式子表示軸負(fù)半軸上所取點.
【答案】(1),(2);(3)
【解析】
(1)根據(jù)題意,分別的坐標(biāo)依次寫出,便能知道的值;
(2)由(1)中的規(guī)律能夠得到與的關(guān)系,進而可表示出,再利用求得的值;
(3)先依次探究軸負(fù)半軸上所取點的坐標(biāo)規(guī)律,進而得到答案.
解:∵,
∴,
∴,
(2)由(1)可知,,
∴
,
當(dāng)時,,
∴;
(3)由題意可知,
當(dāng)時,x軸負(fù)半軸上的點的坐標(biāo)依次是,……
也就是說x軸負(fù)半軸上的點的縱坐標(biāo)為0,橫坐標(biāo)依次減小4,
∴x軸負(fù)半軸上的點的坐標(biāo)可以表示為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:如圖1,在△ABC中,當(dāng)DE∥BC時可以得到三組成比例線段:① ;② ;③ .反之,當(dāng)對應(yīng)線段程比例時也可以推出DE∥BC.
理解運用:三角形的內(nèi)接四邊形是指頂點在三角形各邊上的四邊形.
(1)如圖2,已知矩形DEFG是△ABC的一個內(nèi)接矩形,將矩形DEFG沿CB方向向左平移得矩形PBQH,其中頂點D、E、F、G的對應(yīng)點分別為P、B、Q、H,在圖2中畫出平移后的圖形;
(2)在(1)所得的圖形中,連接CH并延長交BP的延長線于點R,連接AR.求證:AR∥BC;
(3)如圖3,某小區(qū)有一塊三角形空地,已知△ABC空地的邊AB=400米,BC=600米,∠ABC=45°;準(zhǔn)備在△ABC內(nèi)建一個內(nèi)接矩形廣場DEFG(點E、F在邊BC上,點D、G分別在邊AB和AC上),三角形其余部分進行植被綠化,按要求欲使矩形DEFG的對角線EG最短,請在備用圖中畫出使對角線EG最短的矩形.并求出對角線EG的最短距離(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作O交BC邊于點D,過點D作DE⊥AB于點E,ED、AC的延長線交于點F.
(1)求證:EF是O的切線;
(2)若EB=6,且sin∠CFD=,求O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點,點A在x軸上,點B在y軸上.設(shè)拋物線與x軸的另一個交點為點C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動點(不與點A、B重合),
①如圖2,若點P在直線AB上方,連接OP交AB于點D,求的最大值;
②如圖3,若點P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點E或F恰好落在y軸上,直接寫出對應(yīng)的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.
(1)求拋物線的解析式;
(2)當(dāng)點P在直線OD下方時,求面積的最大值.
(3)直線OQ與線段BC相交于點E,當(dāng)與相似時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品原價為100元,第一次漲價,第二次在第一次的基礎(chǔ)上又漲價,設(shè)平均每次增長的百分?jǐn)?shù)為x,那么x應(yīng)滿足的方程是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com