【題目】如圖,在每個小正方形邊長為1的網(wǎng)格中,點A,點C均落在格點上,點B為中點.
(Ⅰ)計算AB的長等于_____;
(Ⅱ)若點P,Q分別為線段BC,AC上的動點,且BP=CQ,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出當PQ最短時,點P,Q的位置,并簡要說明畫圖方法(不要求證明)_____.
【答案】 取BC的中點P,在AC上截取AQ=AC,線段PQ即為所求
【解析】試題分析:(Ⅰ)利用勾股定理計算即可;
(2)設(shè)BP=CQ=x,由BC==,推出PC=﹣x,在Rt△PCQ中,PQ==,對于函數(shù)y=2x2﹣3x+,當x=﹣=時,y有最小值,此時PQ的值最小,此時PC=PB=CQ=AC,取BC的中點P,在AC上截取AQ=AC,圖中PQ即為所求.
解:(Ⅰ)由圖象可知AB==.
(Ⅱ)設(shè)BP=CQ=x,
∵BC==,
∴PC=﹣x,
在Rt△PCQ中,PQ==,
對于函數(shù)y=2x2﹣3x+,當x=﹣=時,y有最小值,此時PQ的值最小,
此時PC=PB=CQ=AC.取BC的中點P,在AC上截取AQ=AC,圖中PQ即為所求.
故答案為:取BC的中點P,在AC上截取AQ=AC,線段PQ即為所求.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高。
(1)求證:AD垂直平分EF。
(2)若AB+AC=16,S△ABC=24,∠EDF=120°,求AD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的個數(shù)有( )
①對頂角相等;②相等的角是對頂角;③若兩個角不相等,則這兩個角一定不是對頂角;④若兩個角不是對頂角,則這兩個角不相等.
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,∠ABC與∠ACB的平分線相交于點O,且OD∥AB交BC于點D,OE∥AC交BC于點E.
(1)試判斷△ODE的形狀,并說明你的理由;
(2)若BC=10,求△ODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D作勻速運動,那么△APB的面積S與點P運動的路程之間的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)(m為常數(shù))的圖象與x軸交于點A(﹣3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過A,C兩點,并與x軸的正半軸交于點B.
(1)求m的值及拋物線的函數(shù)表達式;
(2)設(shè)E是y軸右側(cè)拋物線上一點,過點E作直線AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點的四邊形是平行四邊形?若存在,求出點E的坐標及相應(yīng)的平行四邊形的面積;若不存在,請說明理由;
(3)若P是拋物線對稱軸上使△ACP的周長取得最小值的點,過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試探究是否為定值,并寫出探究過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O中,AC為直徑,MA、MB分別切⊙O于點A、B.
(1)如圖①,若∠BAC=23°,求∠AMB的大;
(Ⅱ)如圖②,過點B作BD∥MA,交AC于點E,交⊙O于點D,若BD=MA,求∠AMB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,過AD的中點O作EF⊥AD,分別交AB、AC于點E、F,連接DE、DF.
(1)判斷四邊形AFDE是什么四邊形?請說明理由;
(2)若BD=8,CD=3,AE=4,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com