【題目】如圖1,△ABC中,∠ACB=90°,∠A=30°,點(diǎn)P是斜邊AB上一動(dòng)點(diǎn)過(guò)點(diǎn)P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,圖2是y關(guān)于x的函數(shù)圖象,則圖象上最高點(diǎn)M的坐標(biāo)是_____.
【答案】(12,24)
【解析】
當(dāng)點(diǎn)Q在線(xiàn)段AC上時(shí),y=AP×PQ=x×x×tanA=x2,當(dāng)點(diǎn)Q在點(diǎn)C處時(shí),即x=ACcosA=12,y為最大值,即可求解.
解:由圖2知,AB=16,
則BC=8,AC=,
則△ABC的高=,
當(dāng)點(diǎn)Q在線(xiàn)段AC上時(shí),
y=AP×PQ=x×x×tanA=x2,
當(dāng)點(diǎn)Q在點(diǎn)C處時(shí),即x=ACcosA=12,
y==,為最大值,
即點(diǎn)M(4,8),
故答案為:(12,24).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)一班和二班各派出10名學(xué)生參加一分鐘跳繩比賽,成績(jī)?nèi)缦卤恚?/span>
(1)兩個(gè)班級(jí)跳繩比賽成績(jī)的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:
表中數(shù)據(jù)a= ,b= ,c= .
(2)請(qǐng)用所學(xué)的統(tǒng)計(jì)知識(shí),從兩個(gè)角度比較兩個(gè)班跳繩比賽的成績(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. 將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
① 當(dāng)時(shí),;② 當(dāng)時(shí),
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線(xiàn)時(shí),直接寫(xiě)出線(xiàn)段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的布袋里裝有3個(gè)標(biāo)有1,2,3的小球,它們的形狀,大小完全相同,李強(qiáng)從布袋中隨機(jī)取出一個(gè)小球,記下數(shù)字為x,然后放回袋中攪勻,王芳再?gòu)拇须S機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)M的坐標(biāo)(x,y).
(1)用列表或畫(huà)樹(shù)狀圖(只選其中一種)的方法表示出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=x2圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將拋物線(xiàn)平移后,新拋物線(xiàn)經(jīng)過(guò)原拋物線(xiàn)的頂點(diǎn),新拋物線(xiàn)與軸正半軸交于點(diǎn),聯(lián)結(jié),,設(shè)新拋物線(xiàn)與軸的另一交點(diǎn)是,新拋物線(xiàn)的頂點(diǎn)是.
(1)求點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)在新拋物線(xiàn)上,聯(lián)結(jié),如果平分,求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,將拋物線(xiàn)沿軸左右平移,點(diǎn)的對(duì)應(yīng)點(diǎn)為,當(dāng)和相似時(shí),請(qǐng)直接寫(xiě)出平移后得到拋物線(xiàn)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=x+b與y軸交于點(diǎn)B(0,﹣3),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A,與x軸交于點(diǎn)C,BC=3AC
(1)求反比例函數(shù)的解析式;
(2)若P是y軸上一動(dòng)點(diǎn),M是直線(xiàn)AB上方的反比例函數(shù)y=(x>0)的圖象上一動(dòng)點(diǎn),直線(xiàn)MN⊥x軸交直線(xiàn)AB于點(diǎn)N,求△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)在藝術(shù)節(jié)期間向全校學(xué)生征集書(shū)畫(huà)作品,美術(shù)王老師從全校隨機(jī)抽取了四個(gè)班級(jí)記作A、B、C、D,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)王老師抽查的四個(gè)班級(jí)共征集到作品多少件?
(2)請(qǐng)把圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若全校參展作品中有五名同學(xué)獲得一等獎(jiǎng),其中有三名男生、二名女生.現(xiàn)在要在其中抽兩名同學(xué)去參加學(xué)校總結(jié)表彰座談會(huì),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好抽中一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③m為任意實(shí)數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中正確的有( 。
A.①②③B.②④C.②⑤D.②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. 將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
① 當(dāng)時(shí),;② 當(dāng)時(shí),
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線(xiàn)時(shí),直接寫(xiě)出線(xiàn)段BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com