【題目】如圖,已知正方形ABCD的邊長為4,點E是正方形內都一點,連接BE,CE,且∠ABE=∠BCE,點F是AB邊上一動點,連接FD,FE,則FD+FE的長度最小值為__.
【答案】2-2
【解析】
根據正方形的性質得到∠ABC=90°,推出∠BEC=90°,得到點E在以BC為直徑的半圓上移動,如圖,設BC的中點為O,作正方形ABCD關于直線AB對稱的正方形APGB,則點D的對應點是P,連接PO交AB于F,交⊙O于E,則線段EP的長即為FD+FE的長度最小值,根據勾股定理即可得到結論.
解:∵四邊形ABCD是正方形,
∴∠ABC=90°,
∴∠ABE+∠CBE=90°,
∵∠ABE=∠BCE,
∴∠BCE+∠CBE=90°,
∴∠BEC=90°,
∴點E在以BC為直徑的半圓上移動,
如圖,設BC的中點為O,作正方形ABCD關于直線AB對稱的正方形APGB,則點D的對應點是P,
連接PO交AB于F,交半圓O于E,則線段EP的長即為FD+FE的長度最小值,OE=4,
∵∠G=90°,PG=BG=AB=4,
∴OG=6,
∴OP==,
∴EP=-2,
∴FD+FE的長度最小值為-2,
故答案為:2-2.
科目:初中數學 來源: 題型:
【題目】(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數,滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數分布表和頻數分布直方圖(不完整且局部污損,其中“■”表示被污損的數據).請解答下列問題:
成績分組 | 頻數 | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計 | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計這1000名學生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( 。
A. 購買江蘇省體育彩票有“中獎”與“不中獎”兩種情況,所以中獎的概率是
B. 國家級射擊運動員射靶一次,正中靶心是必然事件
C. 如果在若干次試驗中一個事件發(fā)生的頻率是,那么這個事件發(fā)生的概率一定也是
D. 如果車間生產的零件不合格的概率為 ,那么平均每檢查1000個零件會查到1個次品
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O中,AC為直徑,MA、MB分別切⊙O于點A、B.
(Ⅰ)如圖①,若∠BAC=250,求∠AMB的大;
(Ⅱ)如圖②,過點B作BD⊥AC于點E,交⊙O于點D,若BD=MA,求∠AMB的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直徑為10的⊙O經過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+48=0的兩根.
(1)求線段OA、OB的長;
(2)已知點C在劣弧OA上,連結BC交OA于D,當OC2=CD·CB時,求C點的坐標;
(3)在⊙O上是否存在點P,使S△POD=S△ABD.若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的O恰為△ABC的外接圓,∠ABC的平分線交O于點D,過點D作DE∥AC交BC的延長線于點E
(1)求證:DE是⊙O的切線;
(2)若AB=4,BC=2,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,點D為邊BC上一點,且AD平分∠BAC,DE⊥AB于點E,DF⊥AC于點F.
(1)求證:BE=CF;
(2)若∠B=40°,求∠ADF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為加快5G網絡建設,某移動通信公司在山頂上建了一座5G信號通信塔AB,山高BE=100米(A,B,E在同一直線上),點C與點D分別在E的兩側(C,E,D在同一直線上),BE⊥CD,CD之間的距離1000米,點D處測得通信塔頂A的仰角是30°,點C處測得通信塔頂A的仰角是45°(如圖),則通信塔AB的高度約為( 。┟祝▍⒖紨祿,)
A.350B.250C.200D.150
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com