【題目】如圖,對(duì)稱軸為直線x=2的拋物線經(jīng)過(guò)點(diǎn)A(-1,0),C(0,5)兩點(diǎn),與x軸另一交點(diǎn)為B,已知M(0,1),E(a,0),F(a+1,0),點(diǎn)P是第一象限內(nèi)的拋物線上的動(dòng)點(diǎn).
(1)求此拋物線的解析式;
(2)當(dāng)a=1時(shí),求四邊形MEFP面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)若△PCM是以點(diǎn)P為頂點(diǎn)的等腰三角形,求a為何值時(shí),四邊形PMEF周長(zhǎng)最小?請(qǐng)說(shuō)明理由.
【答案】(1)y=-x2+4x+5;(2)當(dāng)時(shí),四邊形MEFP面積的最大,最大值為,此時(shí)點(diǎn)P坐標(biāo)為;(3)當(dāng)時(shí),四邊形FMEF周長(zhǎng)最小.
【解析】
試題(1)利用待定系數(shù)法求出拋物線的解析式;
(2)首先求出四邊形MEFP面積的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求出最值及點(diǎn)P坐標(biāo);
(3)四邊形PMEF的四條邊中,PM、EF長(zhǎng)度固定,因此只要ME+PF最小,則PMEF的周長(zhǎng)將取得最小值.如答圖3所示,將點(diǎn)M向右平移1個(gè)單位長(zhǎng)度(EF的長(zhǎng)度),得M1(1,1);作點(diǎn)M1關(guān)于x軸的對(duì)稱點(diǎn)M2,則M2(1,﹣1);連接PM2,與x軸交于F點(diǎn),此時(shí)ME+PF=PM2最。
試題解析:方法一:
試題解析:(1)∵對(duì)稱軸為直線x=2,
∴設(shè)拋物線解析式為y=a(x﹣2)2+k.
將A(﹣1,0),C(0,5)代入得:,解得,
∴y=﹣(x﹣2)2+9=﹣x2+4x+5.
(2)當(dāng)a=1時(shí),E(1,0),F(2,0),OE=1,OF=2.
設(shè)P(x,﹣x2+4x+5),
如答圖2,過(guò)點(diǎn)P作PN⊥y軸于點(diǎn)N,則PN=x,ON=﹣x2+4x+5,
∴MN=ON﹣OM=﹣x2+4x+4.
S四邊形MEFP=S梯形OFPN﹣S△PMN﹣S△OME
=(PN+OF)ON﹣PNMN﹣OMOE
=(x+2)(﹣x2+4x+5)﹣x(﹣x2+4x+4)﹣×1×1
=﹣x2+x+
=﹣(x﹣)2+
∴當(dāng)x=時(shí),四邊形MEFP的面積有最大值為,
把x=時(shí),y=﹣(﹣2)2+9=.
此時(shí)點(diǎn)P坐標(biāo)為(,).
(3)∵M(jìn)(0,1),C(0,5),△PCM是以點(diǎn)P為頂點(diǎn)的等腰三角形,
∴點(diǎn)P的縱坐標(biāo)為3.
令y=﹣x2+4x+5=3,解得x=2±.
∵點(diǎn)P在第一象限,∴P(2+,3).
四邊形PMEF的四條邊中,PM、EF長(zhǎng)度固定,因此只要ME+PF最小,則PMEF的周長(zhǎng)將取得最小值.
如答圖3,將點(diǎn)M向右平移1個(gè)單位長(zhǎng)度(EF的長(zhǎng)度),得M1(1,1);
作點(diǎn)M1關(guān)于x軸的對(duì)稱點(diǎn)M2,則M2(1,﹣1);
連接PM2,與x軸交于F點(diǎn),此時(shí)ME+PF=PM2最。
設(shè)直線PM2的解析式為y=mx+n,將P(2+,3),M2(1,﹣1)代入得:
,解得:m=,n=﹣,
∴y=x﹣.
當(dāng)y=0時(shí),解得x=.∴F(,0).
∵a+1=,∴a=.
∴a=時(shí),四邊形PMEF周長(zhǎng)最。
方法二:
(1)略.
(2)連接MF,過(guò)點(diǎn)P作x軸垂線,交MF于點(diǎn)H,
顯然當(dāng)S△PMF有最大值時(shí),四邊形MEFP面積最大.
當(dāng)a=1時(shí),E(1,0),F(2,0),
∵M(jìn)(0,1),
∴l(xiāng)MF:y=﹣x+1,
設(shè)P(t,﹣t2+4t+5),H(t,﹣t+1),
∴S△PMF=(PY﹣HY)(FX﹣MX),
∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,
∴當(dāng)t=時(shí),S△PMF最大值為,
∵S△MEF=EF×MY=×1×1=,
∴S四邊形MEFP的最大值為+=.
(3)∵M(jìn)(0,1),C(0,5),△PCM是以點(diǎn)P為頂點(diǎn)的等腰三角形,
∴點(diǎn)P的縱坐標(biāo)為3,∴﹣x2+4x+5=0,解得:x=2±,
∵點(diǎn)P在第一象限,∴P(2+,3),PM、EF長(zhǎng)度固定,
當(dāng)ME+PF最小時(shí),PMEF的周長(zhǎng)取得最小值,
將點(diǎn)M向右平移1個(gè)單位長(zhǎng)度(EF的長(zhǎng)度),得M1(1,1),
∵四邊形MEFM1為平行四邊形,
∴ME=M1F,
作點(diǎn)M1關(guān)于x軸的對(duì)稱點(diǎn)M2,則M2(1,﹣1),
∴M2F=M1F=ME,
當(dāng)且僅當(dāng)P,F,M2三點(diǎn)共線時(shí),此時(shí)ME+PF=PM2最小,
∵P(2+,3),M2(1,﹣1),F(a+1,0),
∴KPF=KM1F,∴,∴a=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見(jiàn)的旱災(zāi),“旱災(zāi)無(wú)情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車(chē)最多可裝飲用水40件和蔬菜10件,每輛乙種貨車(chē)最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門(mén)安排甲、乙兩種貨車(chē)時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);
(3)在(2)的條件下,如果甲種貨車(chē)每輛需付運(yùn)費(fèi)400元,乙種貨車(chē)每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門(mén)應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩組同時(shí)加工某種零件,乙組工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來(lái)的2倍.兩組各自加工零件的數(shù)量y(件)與時(shí)間x(時(shí))的函數(shù)圖象如圖所示.
(1)直接寫(xiě)出甲組加工零件的數(shù)量y與時(shí)間x之間的函數(shù)關(guān)系式;
(2)求乙組加工零件總量a的值;
(3)甲、乙兩組加工出的零件合在一起裝箱,每滿300件裝一箱,零件裝箱的時(shí)間忽略不計(jì),求經(jīng)過(guò)多長(zhǎng)時(shí)間恰好裝滿第1箱?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展“我最喜愛(ài)的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
請(qǐng)結(jié)合以上信息解答下列問(wèn)題:
(1)m= ;
(2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校約有 名學(xué)生最喜愛(ài)足球活動(dòng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC為⊙O的直徑,B為⊙O上一點(diǎn),∠ACB=30°,延長(zhǎng)CB至點(diǎn)D,使得CB=BD,過(guò)點(diǎn)D作DE⊥AC,垂足E在CA的延長(zhǎng)線上,連接BE.
(1)求證:BE是⊙O的切線;
(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點(diǎn),則下列結(jié)論:①△ADF≌△FEC;②四邊形ADEF為菱形;③。其中正確的結(jié)論是____________.(填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA平分∠DCE,且與BE的延長(zhǎng)線相交于點(diǎn)A.
(1)若∠A=35°,∠B=30°,則∠BEC= ;(直接在橫線上填寫(xiě)度數(shù))
(2)小明經(jīng)過(guò)改變∠A,∠B的度數(shù)進(jìn)行多次探究,得出∠A,∠B,∠BEC三個(gè)角之間存在固定的數(shù)量關(guān)系,請(qǐng)你用一個(gè)等式表示出這個(gè)關(guān)系,并進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形紙片.把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊上,折痕為AF.且AB=10cm、AD=8cm、DE=6cm.
(1)求證:平行四邊形ABCD是矩形;
(2)求BF的長(zhǎng);
(3)求折痕AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次課外活動(dòng)中,甲、乙兩位同學(xué)測(cè)量公園中孔子塑像的高度,他們分別在A,B兩處用高度為1.5m的測(cè)角儀測(cè)得塑像頂部C的仰角分別為30°,45°,兩人間的水平距離AB為10m,求塑像的高度CF.(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com