【題目】在學習擲硬幣的概率時,老師說:擲一枚質地均勻的硬幣,正面朝上的概率是,小明做了下列三個模擬實驗來驗證.

取一枚新硬幣,在桌面上進行拋擲,計算正面朝上的次數(shù)與總次數(shù)的比值;

把一個質地均勻的圓形轉盤平均分成偶數(shù)份,并依次標上奇數(shù)和偶數(shù),轉動轉盤,計算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;

將一個圓形紙板放在水平的桌面上,紙板正中間放一個圓錐(如圖),從圓錐的正上方往下撒米粒,計算其中一半紙板上的米粒數(shù)與紙板上總米粒數(shù)的比值. 上面的實驗中,不科學的有( 。

A. 0 B. 1 C. 2 D. 3

【答案】A

【解析】試題分析:分析每個試驗的概率后,與原來的擲硬幣的概率比較即可.

試題解析:由于一枚質地均勻的硬幣,只有正反兩面,故正面朝上的概率是;

由于把一個質地均勻的圓形轉盤平均分成偶數(shù)份,并依次標上奇數(shù)和偶數(shù),標奇數(shù)和偶數(shù)的轉盤各占一半.指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值為

由于圓錐是均勻的,所以落在圓形紙板上的米粒的個數(shù)也是均勻的分布的,與紙板面積成正比,可驗證其中一半紙板上的米粒數(shù)與紙板上總米粒數(shù)的比值為

三個試驗均科學,

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】正如我們小學學過的圓錐體積公式V=πr2hπ表示圓周率,r表示圓錐的地面半徑,h表示圓錐的高)一樣,許多幾何量的計算都要用到π.祖沖之是世界上第一個把π計算到小數(shù)點后7位的中國古代科學家,創(chuàng)造了當時世界上的最高水平,差不多過了1000年,才有人把π計算得更精確.在輝煌成就的背后,我們來看看祖沖之付出了多少.現(xiàn)在的研究表明,僅僅就計算來講,他至少要對9位數(shù)字反復進行130次以上的各種運算,包括開方在內.即使今天我們用紙筆來算,也絕不是一件輕松的事情,何況那時候沒有現(xiàn)在的紙筆,數(shù)學計算不是用現(xiàn)在的阿拉伯數(shù)字,而是用算籌(小竹棍或小竹片)進行的,這需要怎樣的細心和毅力啊!他這種嚴謹治學的態(tài)度,不怕復雜計算的毅力,值得我們學習.

下面我們就來通過計算解決問題:已知圓錐的側面展開圖是個半圓,若該圓錐的體積等于,則這個圓錐的高等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△AOB為等腰直角三角形,AB=OA,B(8,0),△ACDx軸上方的等腰直角三角形,∠ACD=90°,連OD.

(1)A點的坐標為_____;

(2)作CH⊥x軸交AO的延長線于點H,

求證:△DCO≌△ACH;

∠AOD的度數(shù);

(3)若點Cx軸負半軸上運動時,其它條件不變,∠AOD的度數(shù)會發(fā)生變化嗎?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將直線向下平移1個單位長度,得到直線,若反比例函數(shù)的圖象與直線相交于點,且點的縱坐標是3

(1)求的值;

(2)結合圖象求不等式的解集

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著柴靜紀錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7500元購進A型空氣凈化器和用6000元購進B型空氣凈化器的臺數(shù)相同.

(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?

(2)在銷售過程中,A型空氣凈化器因為凈化能力強,噪音小而更受消費者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進行降價銷售,經(jīng)市場調查,當B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎上,售價每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應將B型空氣凈化器的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列對于三角形一邊上的高的說法中正確的是(

A.必在三角形內部B.必在三角形外部

C.必與三角形的一邊重合D.以上三種情況都有可能

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖9,正方形的面積為4,反比例函數(shù)()的圖象經(jīng)過點

(1) 求點B的坐標和的值;

(2) 將正方形分別沿直線、翻折,得到正方形.設線段、分別與函數(shù) ()的圖象交于點、,求直線EF的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了預防流感,某學校在休息天用藥薰消毒法對教室進行消毒.已知藥物釋放過程中,室內每立方米空氣中含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,yx成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題

1寫出從藥物釋放開始,yx之間的兩個函數(shù)關系式及相應的自變量取值范圍;

2據(jù)測定,當空氣中每立方米的含藥量降低到0.45毫克以下時,學生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學生才能進入教室?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在ABC中,∠B <C,AD,AE分別是ABC的高和角平分線。

(1)若∠B=30°,C=50°,試確定∠DAE的度數(shù);

(2)試寫出∠DAE,B,C的數(shù)量關系,并證明你的結論。

查看答案和解析>>

同步練習冊答案