【題目】已知點(diǎn)A、B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C、D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A、B、C、D各點(diǎn)依次排列)為正方形時(shí),稱這個(gè)正方形為此函數(shù)圖象的伴侶正方形。如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)伴侶正方形.
(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長(zhǎng);
(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;
(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個(gè)點(diǎn)坐標(biāo)為(3,4).寫出伴侶正方形在拋物線上的另一個(gè)頂點(diǎn)坐標(biāo)_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個(gè)數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫出答案)
【答案】(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對(duì)應(yīng)的拋物線分別為 ; ;,偶數(shù).
【解析】
(1)設(shè)正方形ABCD的邊長(zhǎng)為a,當(dāng)點(diǎn)A在x軸負(fù)半軸、點(diǎn)B在y軸正半軸上時(shí),可知3a=,求出a,
(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本問(wèn)的拋物線解析式不止一個(gè),求出其中一個(gè).
解:(1)∵正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)伴侶正方形.
當(dāng)點(diǎn)A在x軸正半軸、點(diǎn)B在y軸負(fù)半軸上時(shí),
∴AO=1,BO=1,
∴正方形ABCD的邊長(zhǎng)為 ,
當(dāng)點(diǎn)A在x軸負(fù)半軸、點(diǎn)B在y軸正半軸上時(shí),
設(shè)正方形的邊長(zhǎng)為a,得3a=,
∴ ,
所以伴侶正方形的邊長(zhǎng)為或;
(2)作DE、CF分別垂直于x、y軸,
知△ADE≌△BAO≌△CBF,
此時(shí),m<2,DE=OA=BF=m
OB=CF=AE=2﹣m
∴OF=BF+OB=2
∴C點(diǎn)坐標(biāo)為(2﹣m,2),
∴2m=2(2﹣m)
解得m=1,
反比例函數(shù)的解析式為y= ,
(3)根據(jù)題意畫出圖形,如圖所示:
過(guò)C作CF⊥x軸,垂足為F,過(guò)D作DE⊥CF,垂足為E,
∴△CED≌△DGB≌△AOB≌△AFC,
∵C(3,4),即CF=4,OF=3,
∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
則D坐標(biāo)為(﹣1,3);
設(shè)過(guò)D與C的拋物線的解析式為:y=ax2+b,
把D和C的坐標(biāo)代入得: ,
解得 ,
∴滿足題意的拋物線的解析式為y=x2+ ;
同理可得D的坐標(biāo)可以為:(7,﹣3);(﹣4,7);(4,1),;
對(duì)應(yīng)的拋物線分別為 ; ;,
所求的任何拋物線的伴侶正方形個(gè)數(shù)為偶數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,CE與BD相交于點(diǎn)M,BD交AC于點(diǎn)N.
(1)證明:BD=CE;
(2)證明:BD⊥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
求證:(1)△PAC∽△BPD;
(2)若AC=3,BD=1,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤(rùn)=售價(jià)-制造成本)
(1)寫出每月的利潤(rùn)z(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬(wàn)元的利潤(rùn)?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬(wàn)元的利潤(rùn),那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中△ABC的A、B、C三點(diǎn)坐標(biāo)為A(7,1)、B(8,2)、C(9,0).
(1)請(qǐng)?jiān)趫D中畫出△ABC的一個(gè)以點(diǎn)P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點(diǎn)一側(cè)),畫出△A′B′C′關(guān)于y軸對(duì)稱的△A′'B′'C′';
(2)寫出點(diǎn)A'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,O是矩形ABCD的對(duì)角線AC的中點(diǎn),E是線段AD上的一點(diǎn),作OF⊥OE于點(diǎn)O,交直線CD于點(diǎn)F,連結(jié)EF,若EF=2CF=2,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),連接CD.過(guò)E作EF∥DC交BC的延長(zhǎng)線于F.
(1)證明:四邊形CDEF是平行四邊形;
(2)若四邊形CDEF的周長(zhǎng)是18cm,AC的長(zhǎng)為6cm,求線段AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,三個(gè)正方形ABCD、AEMN、CEFG,其中頂點(diǎn)D、C、G在同一條直線上,點(diǎn)E是BC邊上的動(dòng)點(diǎn),連結(jié)AC、AM.
(1)求證:△ACM∽△ABE.
(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.
(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
為宣傳社會(huì)主義核心價(jià)值觀,某社區(qū)居委會(huì)計(jì)劃制作1200個(gè)大小相同的宣傳欄.現(xiàn)有甲、乙兩個(gè)廣告公司都具備制作能力,居委會(huì)派出相關(guān)人員分別到這兩個(gè)廣告公司了解情況,獲得如下信息:
信息一:甲公司單獨(dú)制作完成這批宣傳欄比乙公司單獨(dú)制作完成這批宣傳欄多用10天;
信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.
根據(jù)以上信息,求甲、乙兩個(gè)廣告公司每天分別能制作多少個(gè)宣傳欄?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com