【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x+1的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=在第一象限內(nèi)的圖象交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1,過(guò)點(diǎn)A作ACy軸交反比例函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接BC.

(1)求反比例函數(shù)的表達(dá)式及ABC的面積;

(2)直接寫出當(dāng)x<1時(shí),y=(k≠0)中y的取值范圍.

【答案】(1)y=,SABC=ACBD=×4×3=6;(2)當(dāng)x<0時(shí),y<0.

【解析】

試題分析:(1)先由一次函數(shù)y=3x+1的圖象過(guò)點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1,將x=1代入y=3x+1,求出y的值,得到點(diǎn)B的坐標(biāo),再將B點(diǎn)坐標(biāo)代入y=,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;根據(jù)一次函數(shù)y=3x+1的圖象與y軸交于點(diǎn)A,求出點(diǎn)A的坐標(biāo)為(0,1),再將y=1代入y=,求出x的值,那么AC=4.過(guò)B作BDAC于D,則BD=yB﹣yC=4﹣1=3,然后根據(jù)SABC=ACBD,將數(shù)值代入計(jì)算即可求解;

(2)根據(jù)x<1時(shí),得到,于是得到y(tǒng)的取值范圍.

解:(1)一次函數(shù)y=3x+1的圖象過(guò)點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1,

y=3×1+1=4,

點(diǎn)B的坐標(biāo)為(1,4).

點(diǎn)B在反比例函數(shù)y=的圖象上,

k=1×4=4,

反比例函數(shù)的表達(dá)式為y=,

一次函數(shù)y=3x+1的圖象與y軸交于點(diǎn)A,

當(dāng)x=0時(shí),y=1,

點(diǎn)A的坐標(biāo)為(0,1),

ACy軸,

點(diǎn)C的縱坐標(biāo)與點(diǎn)A的縱坐標(biāo)相同,是1,

點(diǎn)C在反比例函數(shù)y=的圖象上,

當(dāng)y=1時(shí),1=,解得x=4,

AC=4

過(guò)B作BDAC于D,則BD=yB﹣yC=4﹣1=3,

SABC=ACBD=×4×3=6;

(2)由圖形得:當(dāng)0<x<1時(shí),,

y>4,

當(dāng)x<0時(shí),y<0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( 。

A. 面積相等的兩個(gè)三角形全等 B. 周長(zhǎng)相等的兩個(gè)三角形全等

C. 形狀相同的兩個(gè)三角形全等 D. 成軸對(duì)稱的兩個(gè)三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用科學(xué)記數(shù)法表示﹣0.00012=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為直線,頂點(diǎn)為A

(1)求拋物線的表達(dá)式及頂點(diǎn)A的坐標(biāo);

(2)點(diǎn)P為拋物線對(duì)稱軸上一點(diǎn),聯(lián)結(jié)OA、OP

當(dāng)OAOP時(shí),求OP的長(zhǎng);

過(guò)點(diǎn)P作OP的垂線交對(duì)稱軸右側(cè)的拋物線于點(diǎn)B,聯(lián)結(jié)OB,當(dāng)OAP=OBP時(shí),求點(diǎn)B的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x(4x+3)=3x+1化為一般形式 ____________,它的二次項(xiàng)系數(shù)是______,

一次項(xiàng)系數(shù)是_________,常數(shù)項(xiàng)是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角坐標(biāo)系中,點(diǎn)Px,y)在第二象限,且P x 軸、y 軸距離分別為3,7,則P 點(diǎn)坐標(biāo)為( )

A. (-3,7) B. (-7,3) C. (3,7) D. (7,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點(diǎn)為(﹣1,0),下列結(jié)論:①abc>0;②b2﹣4ac=0;③a>2;④方程ax2+bc+c=﹣2的根為x1=x2=﹣1;⑤若點(diǎn)B(﹣,y1),C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y2<y1,其中正確的個(gè)數(shù)是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】神農(nóng)嘗百草,泡泡青菜便是其中之一,小隨同學(xué)利用假期開網(wǎng)店批發(fā)出售泡泡青菜,他打出促銷廣告:最優(yōu)質(zhì)泡泡青菜35箱,每箱售價(jià)30元,若一次性購(gòu)買不超過(guò)10箱時(shí),售價(jià)不變;若一次性購(gòu)買超過(guò)10箱時(shí),沒(méi)多買1箱,所買的每箱泡泡青菜的售價(jià)均降低0.3元.已知該青菜成本是每箱20元,若不計(jì)其他費(fèi)用,設(shè)顧客一次性購(gòu)買泡泡青菜x(x為整數(shù))箱時(shí),該網(wǎng)店從中獲利y元.

(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)顧客一次性購(gòu)買多少箱時(shí),該網(wǎng)店從中獲利最多,最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列條件中能得到平行線的是(  )

①鄰補(bǔ)角的角平分線;②平行線內(nèi)錯(cuò)角的角平分線;③平行線同旁內(nèi)角的角平分線.

A. ①② B. ②③ C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案