【題目】如圖1是一把折疊椅子,如圖2是椅子完全打開(kāi)支穩(wěn)后的側(cè)面示意圖,表示地面所在的直線,其中表示兩根較粗的鋼管,表示座板平面,,交于點(diǎn)F,且長(zhǎng),,長(zhǎng)24cm長(zhǎng)24cm,

1)求座板的長(zhǎng);

2)求此時(shí)椅子的最大高度(即點(diǎn)D到直線的距離).(結(jié)果保留根號(hào))

【答案】1的長(zhǎng)為;(2

【解析】

1)利用平行線分線段成比例定理即可解決問(wèn)題.
2)作BHACHDKABK.想辦法求出AH,CH,AD即可解決問(wèn)題.

解:(1)∵EFAB,
==,
AB=48cm,
EF=16cm,
GE=FG+EF=24+16=40cm

2)作BHACH,DKABK

RtABH中,∵AB=48cm,∠A=60°,∠AHB=90°,
∴∠ABH=30°AH=AB=24cm,BH=24cm,
∵∠ABC=75°,
∴∠CBH=BCH=45°
BH=CH=24cm,
AD=AH+CH+CD=48+24cm,
RtADK中,
DK=ADsin60°=48+24=36+24cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的點(diǎn)A,B點(diǎn)分別在x軸,y軸上,與雙曲線y恰好交于BC的中點(diǎn)E,若OB2OA,則SABO的值為(

A.6B.8C.12D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2cx2c2)(a0)交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C

1A(-1,0,則點(diǎn)B的坐標(biāo)為___________;

2A(-10),a1,點(diǎn)P為第一象限的拋物線,以P為圓心,為半徑的圓恰好與AC相切,求P點(diǎn)坐標(biāo);

3如圖,點(diǎn)R0,ny軸負(fù)半軸上,直線RB交拋物線于另一點(diǎn)D,直線RA交拋物線于E.若DRDBEFy軸于F,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】濟(jì)南市地鐵1號(hào)線于201911日起正式通車,在修建過(guò)程中,技術(shù)人員不斷改進(jìn)技術(shù),提高工作效率,如在打通一條長(zhǎng)600米的隧道時(shí),計(jì)劃用若干小時(shí)完成,在實(shí)際工作過(guò)程中,每小時(shí)打通隧道長(zhǎng)度是原計(jì)劃的1.2倍,結(jié)果提前2小時(shí)完成任務(wù).

1)求原計(jì)劃每小時(shí)打通隧道多少米?

2)如果按照這個(gè)速度下去,后面的300米需要多少小時(shí)打通?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù) yax2+bx+ca≠0)的圖象如圖所示,對(duì)稱軸是直線 x=1,下列結(jié)論:ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正確的是(

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】、乙兩位同學(xué)進(jìn)行長(zhǎng)跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時(shí)間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說(shuō)法正確的是( )

A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 跑步過(guò)程中,兩人相遇一次

C. 起跑后160秒時(shí),甲、乙兩人相距最遠(yuǎn)

D. 乙在跑前300米時(shí),速度最慢

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,BC=10,AB=,∠ABC=30°,點(diǎn)P在直線AC上,點(diǎn)P到直線AB的距離為1,則CP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);

(3)在直線l上是否存在點(diǎn)M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)AAEBC,垂足為E,連接DE,F為線段DE上一點(diǎn),且AFE=B

1)求證:ADF∽△DEC

2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案