精英家教網 > 初中數學 > 題目詳情

【題目】請認真觀察圖形,解答下列問題:

1)根據圖中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.

方法1 ;

方法2

2)從中你能發(fā)現(xiàn)什么結論,請用等式表示出來: ;

3)利用(2)中結論解決下面的問題:若,,求的值.

【答案】1,;(2;(312

【解析】

1)方法1:兩個正方形面積和,方法2:大正方形面積-兩個小長方形面積;

2)由題意可直接得到;

3)根據等式將原式變形,然后代入求值即可.

解:(1)由題意可得:方法1a2+b2方法2:(a+b2-2ab,

故答案為:a2+b2,(a+b2-2ab;

2a2+b2=a+b2-2ab,

故答案為:a2+b2=a+b2-2ab

3)由(2)可得a2+b2=a+b2-2ab=4-2×2=12

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形OABC的邊長為4,對角線相交于點P,頂點A,C分別在x軸,y軸的正半軸上,拋物線L經過O,P,A三點,點E是正方形內的拋物線上的動點.

(1)點P的坐標為;
(2)求拋物線L的解析式;
(3)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

(1)請你補全這個輸水管道的圓形截面;
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,M,N分別是邊ABBC的中點,EF是邊AC上的三等分點,連接MENF且延長后交于點D,連接BEBF

1)求證:四邊形BFDE是平行四邊形;(2)當△ABC滿足什么條件時四邊形BFDE是菱形,證明你的結論。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】清朝康熙皇帝是我國歷史上對數學很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數學專著,其中有一文《積求勾股法》,它對“三邊長為34、5的整數倍的直角三角形,已知面積求邊長”這一問提出了解法:“若所設者為積數(面積),以積率六除之,平方開之得數,再以勾股弦各率乘之,即得勾股弦之數”.用現(xiàn)在的數學語言表述是:“若直角三角形的三邊長分別為3、4、5的整數倍,設其面積為S,則第一步: m;第二步: k;第三步:分別用3、45乘以k,得三邊長”.

1)當面積S等于150時,請用康熙的“積求勾股法”求出這個直角三角形的三邊長;

2)你能證明積求勾股法的正確性嗎?請寫出證明過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC△ADE中,邊AD與邊BC交于點P(不與點B、C重合),點B、EAD異側,OAOC分別是∠PAC∠PCA的角平分線.

    

1)當∠APC =60°時,求∠AOC的度數;

2)當AB⊥AC,AB=AD=4,AC=3BC=5時,設AP=x,用含x的式子表示PD,并求PD的最大值;

3)當AB⊥AC,∠B=20°時,∠AOC的取值范圍為α°<∠AOC <β°,直接寫出α、β的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點C(﹣3,0),點A,B分別在x軸,y軸的正半軸上,且滿足 +|OA﹣1|=0

(1)求點A,點B的坐標.
(2)若點P從C點出發(fā),以每秒1個單位的速度沿射線CB運動,連結AP.設△ABP的面積為S,點P的運動時間為t秒,求S與t的函數關系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點P,使以點A,B,P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線PQMN,點CPQ、MN之間(不在直線PQMN上)的一個動點.

1)若∠1與∠2都是銳角,如圖甲,請直接寫出∠C與∠1,∠2之間的數量關系;

2)若把一塊三角尺(∠A30°,∠C90°)按如圖乙方式放置,點D,E,F是三角尺的邊與平行線的交點,若∠AEN=∠A,求∠BDF的度數;

3)將圖乙中的三角尺進行適當轉動,如圖丙,直角頂點C始終在兩條平行線之間,點G在線段CD上,連接EG,且有∠CEG=∠CEM,求值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中:①0是最小的整數;②有理數不是正數就是負數;③非負數就是正數;④不僅是有理數,而且是分數;⑤是無限不循環(huán)小數,所以不是有理數;⑥無限小數不都是有理數;⑦正數中沒有最小的數,負數中沒有最大的數.其中錯誤的說法的個數為(

A.7B.6C.5D.4

查看答案和解析>>

同步練習冊答案