【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)若⊙O的半徑為3,∠CDF=15°,求陰影部分的面積;
(2)求證:DF是⊙O的切線(xiàn);
(3)求證:∠EDF=∠DAC.
【答案】(1)陰影部分的面積為3π﹣;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.
【解析】(1)連接OE,過(guò)O作OM⊥AC于M,求出AE、OM的長(zhǎng)和∠AOE的度數(shù),分別求出△AOE和扇形AOE的面積,即可求出答案;
(2)連接OD,求出OD⊥DF,根據(jù)切線(xiàn)的判定求出即可;
(3)連接BE,求出∠FDC=∠EBC,∠FDC=∠EDF,即可求出答案.
詳(1)解: 連接OE,過(guò)O作OM⊥AC于M,則∠AMO=90°,
∵DF⊥AC,
∴∠DFC=90°,
∵∠FDC=15°,
∴∠C=180°-90°-15°=75°,
∵AB=AC,
∴∠ABC=∠C=75°,
∴∠BAC=180°-∠ABC∠C=30°,
∴OM=OA=×3=,AM=OM=,
∵OA=OE,OM⊥AC,
∴AE=2AM=3,
∴∠BAC=∠AEO=30°,
∴∠AOE=180°-30°-30°=120°,
∴陰影部分的面積S=S扇形AOE-S△AOE=;
(2)證明:連接OD,
∵AB=AC,OB=OD,
∴∠ABC=∠C,∠ABC=∠ODB,
∴∠ODB=∠C,
∴AC∥OD,
∵DF⊥AC,
∴DF⊥OD,
∵OD過(guò)O,
∴DF是⊙O的切線(xiàn);
(3)證明:連接BE,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∴BE⊥AC,
∵DF⊥AC,
∴BE∥DF,
∴∠FDC=∠EBC,
∵∠EBC=∠DAC,
∴∠FDC=∠DAC,
∵A、B、D、E四點(diǎn)共圓,
∴∠DEF=∠ABC,
∵∠ABC=∠C,
∴∠DEC=∠C,
∵DF⊥AC,
∴∠EDF=∠FDC,
∴∠EDF=∠DAC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有兩個(gè)紙箱,每個(gè)紙箱內(nèi)各裝有4個(gè)材質(zhì)、大小都相同的乒乓球,其中一個(gè)紙箱內(nèi)4個(gè)小球上分別寫(xiě)有1、2、3、4這4個(gè)數(shù),另一個(gè)紙箱內(nèi)4個(gè)小球上分別寫(xiě)有5、6、7、8這4個(gè)數(shù),甲、乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)紙箱中各隨機(jī)摸出一個(gè)小球,然后把兩個(gè)小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進(jìn)行下一次游戲,最后得分高者勝出.。
(1)請(qǐng)你通過(guò)列表(或樹(shù)狀圖)分別計(jì)算乘積是2的倍數(shù)和3的倍數(shù)的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?若你認(rèn)為不公平,請(qǐng)你修改得分規(guī)則,使游戲?qū)﹄p方公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 ,等腰三角形PEF中,PE=PF,點(diǎn)O在EF邊上(異于點(diǎn)E,F),點(diǎn)Q是PO延長(zhǎng)線(xiàn)上一點(diǎn),若△EFQ為等腰三角形,則稱(chēng)點(diǎn)Q為△PEF的“同類(lèi)點(diǎn)”.
(1)如圖,BG平分∠MBN,過(guò)射線(xiàn)BM上的點(diǎn)A作AD∥BN,交射線(xiàn)BG于點(diǎn)D,點(diǎn)O為BD上一點(diǎn),連接AO并延長(zhǎng)交射線(xiàn)BN于點(diǎn)C,若∠BAD=100°,∠BCD=70°,求證:點(diǎn)C是△ABD的“同類(lèi)點(diǎn)”;
(2)如圖③,在5×5的正方形網(wǎng)格圖上有一個(gè)△ABC,點(diǎn)A,B,C均在格點(diǎn)上,在給出的網(wǎng)格圖上有一個(gè)格點(diǎn)D,使得點(diǎn)D為△ABC的“同類(lèi)點(diǎn)”,則這樣的點(diǎn)D共有__________個(gè);
(3)凸四邊形ABCD中,∠ABC=110°,DA=AB=BC,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,且BD≠CD,若點(diǎn)C為△ABD的“同類(lèi)點(diǎn)”,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一。為了增強(qiáng)居民節(jié)水意識(shí),某市自來(lái)水公司對(duì)居民用水采用以戶(hù)為單位分段計(jì)費(fèi)辦法收費(fèi)。即一月用水10噸以?xún)?nèi)(包括10噸)的用戶(hù),每噸收水費(fèi)a元;一月用水超過(guò)10噸的用戶(hù),10噸水仍按每噸a元收費(fèi),超過(guò)10噸的部分,按每噸b元(b>a)收費(fèi)。設(shè)一戶(hù)居民月用水x噸,應(yīng)收水費(fèi)y元,y與x之間的函數(shù)關(guān)系如圖所示。
(1)求a的值;某戶(hù)居民上月用水8噸,應(yīng)收水費(fèi)多少元?
(2)求b的值,并寫(xiě)出當(dāng)x>10時(shí),y與x之間的函數(shù)關(guān)系式;
(3)已知居民甲上月比居民乙多用水4噸,兩家共收水費(fèi)46元,求他們上月分別用水多少?lài)崳?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了預(yù)測(cè)本校九年級(jí)男生畢業(yè)體育測(cè)試達(dá)標(biāo)情況,隨機(jī)抽取該年級(jí)部分男生進(jìn)行了一次測(cè)試(滿(mǎn)分50分,成績(jī)均記為整數(shù)分),并按測(cè)試成績(jī)m(單位:分)分成四類(lèi):A類(lèi)(45<m≤50),B類(lèi)(40<m≤45),C類(lèi)(35<m≤40),D類(lèi)(m≤35)繪制出如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)求本次抽取的樣本容量和扇形統(tǒng)計(jì)圖中A類(lèi)所對(duì)的圓心角的度數(shù);
(2)若該校九年級(jí)男生有500名,D類(lèi)為測(cè)試成績(jī)不達(dá)標(biāo),請(qǐng)估計(jì)該校九年級(jí)男生畢業(yè)體育測(cè)試成績(jī)能達(dá)標(biāo)的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線(xiàn),它們相交于點(diǎn)O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上,兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為和12,點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)求經(jīng)過(guò)2秒后,數(shù)軸點(diǎn)、分別表示的數(shù);
(2)當(dāng)時(shí),求的值;
(3)在運(yùn)動(dòng)過(guò)程中是否存在時(shí)間使,若存在,請(qǐng)求出此時(shí)的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB+AC=20,OB,OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則圖中陰影部分的面積等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1+∠4﹦180°,∠2﹦∠E,則EF∥BC,下面是王華同學(xué)的推導(dǎo)過(guò)程﹐請(qǐng)你幫他在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.
證明:
∵∠1+∠4﹦180°( ),
∠3﹦∠4 ( ),
∴∠1﹢ ﹦180°.
∴AE∥CG ( )
∴∠E﹦∠CGF( ).
∵∠2﹦∠E(已知)
∴ ∠2﹦∠CGF( ).
∴ BC∥EF( ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com