【題目】已知從甲地到乙地,某船順?biāo)叫行?/span>2小時(shí),逆水航行需3小時(shí),
(1)設(shè)輪船在靜水中前進(jìn)的速度是千米/時(shí),水流的速度是y千米/時(shí),則輪船共航行多少千米?
(2)如果輪船在靜水中前進(jìn)的速度是60千米/時(shí),則水流的速度是多少千米/時(shí)?
【答案】(1) 輪船共航行(32-y)千米;(2) 水的流速為12千米/時(shí).
【解析】
(1)根據(jù)順?biāo)俣?/span>=靜水速度+水流速度,逆水速度=-靜水速度-水流速度,最后根據(jù)速度、時(shí)間和路程的關(guān)系列出方程求出y.
(2)設(shè)水流的速度是x千米/時(shí),,根據(jù)路程不變的等量關(guān)系列出一元一次方程即可.
解:(1)由題意得:順?biāo)俣?/span>=+y,逆水速度=-y,
則:2(+y)+3(-y)=32-y
答:輪船共航行(32-y)千米.
(2)設(shè)水流的速度是x千米/時(shí),則有:
2(60+x)=3(60-x)
解得:x=12
答:水的流速為12千米/時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題9分)據(jù)報(bào)道,“國(guó)際剪刀石頭布協(xié)會(huì)”提議將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目.某校學(xué)生會(huì)想知道學(xué)生對(duì)這個(gè)提議的了解程度,隨機(jī)抽取部分學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有___名,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為___;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中對(duì)將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目的提議達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(3)“剪刀石頭布”比賽時(shí)雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢(shì)中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢(shì),則算打平.若小剛和小明兩人只比賽一局,請(qǐng)用樹狀圖或列表法求兩人打平的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E是BC邊上一點(diǎn),F是BA延長(zhǎng)線上一點(diǎn),AF=CE,連接BD,EF,FG平分∠BFE交BD于點(diǎn)G.
(1)求證:△ADF≌△CDE;
(2)求證:DF=DG;
(3)如圖2,若GH⊥EF于點(diǎn)H,且EH=FH,設(shè)正方形ABCD的邊長(zhǎng)為x,GH=y,求y與x之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E是位于AB兩側(cè)的半圓AB上的動(dòng)點(diǎn),射線DC切⊙O于點(diǎn)D.連接DE,AE,DE與AB交于點(diǎn)P,F是射線DC上一動(dòng)點(diǎn),連接FP,FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①若DF=AP,當(dāng)∠DAE=_________時(shí),四邊形ADFP是菱形;
②若BF⊥DF,當(dāng)∠DAE=_________時(shí),四邊形BFDP是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題發(fā)現(xiàn)】
(1)如圖(1),四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為__________;
【拓展探究】
(2)如圖(2),在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;
【解決問題】
(3)如圖(3),在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫出BD'平方的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市區(qū)自2014年1月起,居民生活用水開始實(shí)行階梯式計(jì)量水價(jià),該階梯式計(jì)量水價(jià)分為三級(jí)(如下表所示):
月用水量(噸) | 水價(jià)(元/噸) |
第一級(jí) 20噸以下(含20噸) | 1.6 |
第二級(jí) 20噸﹣30噸(含30噸) | 2.4 |
第三級(jí) 30噸以上 | 3.2 |
例:某用戶的月用水量為32噸,按三級(jí)計(jì)量應(yīng)繳水費(fèi)為:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用戶的月用水量為12噸,則甲需繳的水費(fèi)為 元;
(2)如果乙用戶繳的水費(fèi)為39.2元,則乙月用水量 噸;
(3)如果丙用戶的月用水量為a噸,則丙用戶該月應(yīng)繳水費(fèi)多少元?(用含a的代數(shù)式表示,并化簡(jiǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾何計(jì)算
(1)如圖1,∠AOC,∠BOD都是直角,且∠AOB與∠AOD的度數(shù)比是2:11,求∠BOC的度數(shù).
(2)如圖2,點(diǎn)C分線段AB為3:4,AC<BC,點(diǎn)D分線段為AB上一點(diǎn)且11BD=3AD,若CD=10cm,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com