【題目】如圖,BC是直線AE外兩點(diǎn),且∠1=∠2,要得到△ABE≌△ACE,需要添加的條件有①AB=AC;②BE=CE;③∠B=∠C;④∠AEB=∠AEC;⑤∠BAE=∠CAE.其中正確的( )
A.①②③B.②③④C.②③⑤D.①④⑤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(k>0)的圖象經(jīng)過點(diǎn)A(1,2)、B兩點(diǎn),過點(diǎn)A作x軸的垂線,垂足為C,連接AB、BC.若三角形ABC的面積為3,則點(diǎn)B的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖,已知點(diǎn)B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF.
求證:(1)△ABC≌△DEF; (2)BE=CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,點(diǎn)F在邊AC上,連接DF.
(1)求證:AC=AE;
(2)若CF=BE,直接寫出線段AB,AF,EB的數(shù)量關(guān)系: .
(3)若AC=8,AB=10,且△ABC的面積等于24,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于非零實(shí)數(shù)a、b,規(guī)定ab=,若(x﹣3)(3﹣2x)=0,則x的值為_____;若關(guān)于x的方程(x﹣3)(3﹣2x)﹣(3﹣x)(mx﹣2)=﹣1無解,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為每秒1個(gè)單位長度,點(diǎn)N的運(yùn)度為每秒2個(gè)單位長度當(dāng)點(diǎn)M第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
點(diǎn)M、N運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形?
當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),若點(diǎn)的坐標(biāo)為(其中為常數(shù),且)則稱點(diǎn)為點(diǎn)的“系雅培點(diǎn)”;
例如:的“3系雅培點(diǎn)”為,即.
(1)點(diǎn)的“2系雅培點(diǎn)”的坐標(biāo)為 ;
(2)若點(diǎn)在軸的正半軸上,點(diǎn)的“系雅培點(diǎn)”為點(diǎn),若在△中,,求的值;
(3)已知點(diǎn)在第四象限,且滿足;點(diǎn)是點(diǎn)的“系雅培點(diǎn)”,若分式方程無解,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com