【題目】如圖,在平行四邊形ABCD中,AC=CD,若點(diǎn)E、F分別為邊BC、CD上的兩點(diǎn),且∠EAF=∠CAD.
(1)求證:△ADF∽△ACE;
(2)求證:AE=EF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)可得到∠BCA=∠CAB,由等邊對(duì)等角可得到∠CAD=∠D,根據(jù)平行四邊形的性質(zhì)利用SAS可判定△BCA≌△DAC,由全等三角形的性質(zhì)即可得到∠D=∠ACB,再根據(jù)相似三角形的判定得出即可;
(2)由△ADF∽△ACE可得到對(duì)應(yīng)邊成比例,已知∠EAF=∠CAD從而可推出△AEF∽△ACD,已知AC=CD,根據(jù)對(duì)應(yīng)成比例不難得到結(jié)論.
解:(1)∵AC=CD,
∴∠D=∠CAD.
∵平行四邊形ABCD,
∴AD∥BC,
∴∠CAD=∠ACB,
∴∠D=∠ACB.
∵∠EAF=∠CAD,
∴∠DAF=∠CAE,
∴△ADF∽△ACE;
(2)∵△ADF∽△ACE,
∴,
∵∠EAF=∠CAD,
∴△AEF∽△ACD,
∴,
又∵AC=CD,
∴AE=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),,,連接和.
(1)求拋物線的解析式;
(2)點(diǎn)在拋物線的對(duì)稱軸上,當(dāng)的周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在菱形ABCD的對(duì)角線BD上,連接AE,且AE=BE,⊙O是△ABE的外接圓,連接OB.
(1)求證:OB⊥BC;
(2)若BD=,tan∠OBD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E,F(xiàn),G分別是等邊三角形ABC三邊AB,BC,CA上的動(dòng)點(diǎn),且始終保持AE=BF=CG,設(shè)△EFG的面積為y,AE的長(zhǎng)為x,y關(guān)于x的函數(shù)圖象大致為圖2所示,則等邊三角形ABC的邊長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察猜想:(1)如圖①,在Rt△ABC中,∠BAC=90°,AB=AC=3,點(diǎn)D與點(diǎn)A重合,點(diǎn)E在邊BC上,連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DF,連接BF,BE與BF的位置關(guān)系是 ,BE+BF= ;
探究證明:(2)在(1)中,如果將點(diǎn)D沿AB方向移動(dòng),使AD=1,其余條件不變,如圖②,判斷BE與BF的位置關(guān)系,并求BE+BF的值,請(qǐng)寫出你的理由或計(jì)算過程;
拓展延伸:(3)如圖③,在△ABC中,AB=AC,∠BAC=a,點(diǎn)D在邊BA的延長(zhǎng)線上,BD=n,連接DE,將線段DE繞著點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角∠EDF=a,連接BF,則BE+BF的值是多少?請(qǐng)用含有n,a的式子直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AB=10,AC=6,點(diǎn)E、F分別是邊AC、BC上的動(dòng)點(diǎn),過點(diǎn)E作ED⊥AB于點(diǎn)D,過點(diǎn)F作FG⊥AB于點(diǎn)G,DG的長(zhǎng)始終為2.
(1)當(dāng)AD=3時(shí),求DE的長(zhǎng);
(2)當(dāng)點(diǎn)E、F在邊AC、BC上移動(dòng)時(shí),設(shè),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3) 在點(diǎn)E、F移動(dòng)過程中,△AED與△CEF能否相似,若能,求AD的長(zhǎng);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 圖1是一款優(yōu)雅且穩(wěn)定的拋物線型落地?zé)簦阑菽?/span>C為拋物線支架的最高點(diǎn),燈罩D距離地面1.86米,燈柱AB及支架的相關(guān)數(shù)據(jù)如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C,P均在⊙O上,且分布在直徑AB的兩側(cè),BE⊥CP于點(diǎn)E.
(1)求證:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是邊長(zhǎng)為2的正方形ABCD的中心.函數(shù)y=(x﹣h)2的圖象與正方形ABCD有公共點(diǎn),則h的取值范圍是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com