【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,,…和,,,…分別在直線和軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果(1,1),(),那么點(diǎn)的縱坐標(biāo)是_______.
【答案】
【解析】
利用待定系數(shù)法求出直線的解析式,再求出直線與x軸、y軸的交點(diǎn)坐標(biāo),求出直線與x軸的夾角的正切值,分別過(guò)等腰直角三角形的直角頂點(diǎn)向x軸作垂線,然后根據(jù)等腰直角三角形斜邊上的高線與中線重合并且等于斜邊的一半,利用正切值列方程,依次求出三角形的斜邊上的高線,即可得到各點(diǎn)的縱坐標(biāo)的規(guī)律,進(jìn)而即可求解.
∵(1,1),(),在直線y=kx+b上,
∴,解得:,
∴直線解析式為:y=x+,
設(shè)直線與x軸、y軸的交點(diǎn)分別為N、M,
當(dāng)x=0時(shí),y=,
當(dāng)y=0時(shí),x+=0,解得:x=4,
∴點(diǎn)M、N的坐標(biāo)分別為M(0,),N(4,0),
∴tan∠MNO===,
作A1C1⊥x軸于點(diǎn)C1,A2C2⊥x軸于點(diǎn)C2,A3C3⊥x軸于點(diǎn)C3,
∵(1,1),()
∴OB2=OB1+B1B2=2×1+2×=2+3=5,
tan∠MNO===,
∵△B2A3B3是等腰直角三角形,
∴A3C3=B2C3,
∴A3C3==()2,
同理可求,第四個(gè)等腰直角三角形A4C4==()3,
依此類推,點(diǎn)An的縱坐標(biāo)是()n1.,
∴點(diǎn)的縱坐標(biāo)是:.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形中,,一個(gè)三角尺的直角頂點(diǎn)與邊的中點(diǎn)重合,且兩條直角邊分別經(jīng)過(guò)點(diǎn)和點(diǎn),將三角尺繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)任意一個(gè)銳角,當(dāng)三角尺的兩直角邊與,分別交于點(diǎn),時(shí),下列結(jié)論中錯(cuò)誤的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請(qǐng)你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最。ú槐貙懗鲞^(guò)程),并寫出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組將我校九年級(jí)某班學(xué)生一分鐘跳繩的測(cè)試成績(jī)進(jìn)行了整理,分成5個(gè)小組(x表成績(jī),單位:次,且100≤x<200),根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,其中B、E兩組測(cè)試成績(jī)?nèi)藬?shù)直方圖的高度比為4:1,請(qǐng)結(jié)合下列圖標(biāo)中相關(guān)數(shù)據(jù)回答下列問(wèn)題:
測(cè)試成績(jī)頻數(shù)分布表
組別 | 成績(jī)x次 | 頻數(shù)(人數(shù)) | 頻率 |
A | 100≤x<120 | 5 | |
B | 120≤x<140 | b | |
C | 140≤x<160 | 15 | 30% |
D | 160≤x<180 | 10 | |
E | 180≤x<200 | a |
(1)填空:a= ,b= ,本次跳繩測(cè)試成績(jī)的中位數(shù)落在 組(請(qǐng)?zhí)顚懽帜福?/span>
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)已知本班中甲、乙兩位同學(xué)的測(cè)試成績(jī)分別為185次、195次,現(xiàn)要從E組中隨機(jī)選取2人介紹經(jīng)驗(yàn),請(qǐng)用列表法或畫樹狀圖的方法,求出甲、乙兩人中至少1人被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課外實(shí)踐活動(dòng)中,小李同學(xué)在河邊的A,B兩點(diǎn)處,利用測(cè)角儀分別對(duì)對(duì)岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售一種商品,童威經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):該商品的周銷售量(件)是售價(jià)(元/件)的一次函數(shù),其售價(jià)、周銷售量、周銷售利潤(rùn)(元)的三組對(duì)應(yīng)值如下表:
售價(jià)(元/件) | 50 | 60 | 80 |
周銷售量(件) | 100 | 80 | 40 |
周銷售利潤(rùn)(元) | 1000 | 1600 | 1600 |
注:周銷售利潤(rùn)=周銷售量×(售價(jià)-進(jìn)價(jià))
(1)①求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)
②該商品進(jìn)價(jià)是_________元/件;當(dāng)售價(jià)是________元/件時(shí),周銷售利潤(rùn)最大,最大利潤(rùn)是__________元
(2)由于某種原因,該商品進(jìn)價(jià)提高了元/件,物價(jià)部門規(guī)定該商品售價(jià)不得超過(guò)65元/件,該商店在今后的銷售中,周銷售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若周銷售最大利潤(rùn)是1400元,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到________元購(gòu)物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O上的點(diǎn),C是⊙O上的點(diǎn),點(diǎn)D在AB的延長(zhǎng)線上,∠BCD=∠BAC.
(1)求證:CD是⊙O的切線;
(2)若∠D=30°,BD=2,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com