【題目】如圖,在平面直角坐標(biāo)系中,A (8,0) ,B (0,6),動(dòng)點(diǎn)M從點(diǎn)A出發(fā)沿AO以每秒2個(gè)單位長(zhǎng)度的速度向原點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)B出發(fā)沿折線BO﹣OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N在y軸上的速度是每秒3個(gè)單位長(zhǎng)度,在x軸上的速度是每秒4個(gè)單位長(zhǎng)度,過(guò)點(diǎn)M作x軸的垂線交AB于點(diǎn)C,連結(jié)MN、CN.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),△MCN的面積為S(平方單位).
(1)當(dāng)t為何值時(shí),點(diǎn)M、N相遇?
(2)求△MCN的面積S(平方單位)與時(shí)間t(秒)的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),△MCN是等腰三角形?
【答案】(1);(2)當(dāng)0<t≤2時(shí),;當(dāng)2<t< 時(shí),;當(dāng)<t≤4時(shí),;(3)當(dāng)t=或或時(shí),△MCN是等腰三角形
【解析】
(1)由題意列方程可求t的值;
(2)分0<t≤2,2<t<,<t≤4三種情況討論,由三角形的面積公式可求解;
(3)分0<t≤2,2<t<,<t≤4三種情況討論,即可求t的值.
解:(1)由題意可得:2t+4(t﹣2)=8
∴t=
∴當(dāng)t=時(shí),點(diǎn)M、點(diǎn)N相遇;
(2)∵CM⊥OA,BO⊥OA,
∴CM∥BO,
∴△CMA∽△BOA ,
∴ 即:,
①如圖1所示:當(dāng)0<t≤2時(shí), ,
②如圖2所示:當(dāng)2<t< 時(shí),,
③如圖3所示:當(dāng)
(3)應(yīng)分三種情況討論:
①當(dāng)0<t≤2時(shí),點(diǎn)N在BO上.
(i)如圖4,過(guò)C作CH⊥OB于H,
則CH=OM=
又∵CM=
∴CH—CM=—=
當(dāng)0<t≤2時(shí),>0,即CH>CM
又CN≥CH,MN≥CH
∴CN>CM,MN>CM
即CNCM,MNMC
(ii)若NC=NM時(shí),則△MCN是等腰三角形.
此時(shí)點(diǎn)N在CM的垂直平分線上,
∴ON=,
則有:6﹣3t=
解得:t=
②當(dāng)2<t<時(shí),如圖2所示:此時(shí)點(diǎn)N在OA上,且點(diǎn)N在點(diǎn)M左側(cè).
∵∠CMN=90°
∴只有當(dāng)MC=MN時(shí),△MCN是等腰三角形.
此時(shí),
則有:
解得:t=
③當(dāng)<t≤4時(shí),如圖3所示:點(diǎn)N在OA上,且點(diǎn)N在點(diǎn)M右側(cè).
同理可得:只有當(dāng)MC=MN時(shí),△MCN是等腰三角形.
此時(shí)
則有:
解得:t=
綜上所述:當(dāng)t=或或時(shí),△MCN是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,點(diǎn)D的坐標(biāo)是(0,),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c恰好經(jīng)過(guò)x軸上A、B兩點(diǎn).
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(3)若將上述拋物線沿其對(duì)稱(chēng)軸向上平移后恰好過(guò)D點(diǎn),求平移后拋物線的解析式,并指出平移了多少個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫(huà)出 △ABC關(guān)于y 軸的對(duì)稱(chēng)圖形 △A1B1C1;
(2)畫(huà)出將△ABC 繞原點(diǎn) O逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過(guò)的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)在“精準(zhǔn)扶貧”活動(dòng)中銷(xiāo)售一農(nóng)產(chǎn)品,經(jīng)分析發(fā)現(xiàn)月銷(xiāo)售量y(萬(wàn)件)與月份x(月)的關(guān)系為:,每件產(chǎn)品的利潤(rùn)z(元)與月份x(月)的關(guān)系如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
z | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 10 | 10 |
(1)請(qǐng)你根據(jù)表格求出每件產(chǎn)品利潤(rùn)z(元)與月份x(月)的關(guān)系式;
(2)若月利潤(rùn)w(萬(wàn)元)=當(dāng)月銷(xiāo)售量y(萬(wàn)件)×當(dāng)月每件產(chǎn)品的利潤(rùn)z(元),求月利潤(rùn)w(萬(wàn)元)與月份x(月)的關(guān)系式;
(3)當(dāng)x為何值時(shí),月利潤(rùn)w有最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》章,主要講述了以測(cè)量問(wèn)題為中心的直角三角形三邊互求的關(guān)系.其中記載:“今有邑,東西七里,南北九里,各中開(kāi)門(mén),出東門(mén)一十五里有木,問(wèn):出南門(mén)幾何步而見(jiàn)木?”
譯文:“今有一座長(zhǎng)方形小城,東西向城墻長(zhǎng)7里,南北向城墻長(zhǎng)9里,各城墻正中均開(kāi)一城門(mén).走出東門(mén)15里處有棵大樹(shù),問(wèn)走出南門(mén)多少步恰好能望見(jiàn)這棵樹(shù)?”(注:1里=300步)
你的計(jì)算結(jié)果是:出南門(mén)幾何步而見(jiàn)木( )
A.300步B.315步C.400步D.415步
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊沿射線向右平移到的位置,連接,則下列結(jié)論:①;②互相平分;③四邊形是菱形;④。其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.則與的數(shù)量關(guān)系是_____,的度數(shù)為______.
(2)拓展探究:如圖2,在中,,,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),當(dāng)∠ADF=∠ACF=90°時(shí),求的值.
(3)解決問(wèn)題:如圖3,在中,,點(diǎn)為的延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),直接寫(xiě)出當(dāng)時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(,,為常數(shù)且)中的與的部分對(duì)應(yīng)值如下表:
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
給出了結(jié)論:
(1)二次函數(shù)有最大值,最大值為5;(2);(3)時(shí),的值隨值的增大而減。唬4)3是方程的一個(gè)根;(5)當(dāng)時(shí),.則其中正確結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣(mài)出300件,市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元,每星期要少賣(mài)出10件;每降價(jià)1元,每星期可多賣(mài)出20件,已知商品的進(jìn)價(jià)為每件40元
(1)設(shè)每件漲價(jià)x元,則每星期實(shí)際可賣(mài)出 件,每星期售出商品的利潤(rùn)y為 元.x的取值范圍是 ;
(2)設(shè)每件降價(jià)m元,則每星期售出商品的利潤(rùn)w為 元;
(3)在漲價(jià)的情況下,如何定價(jià)才能使每星期售出商品的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com