【題目】將點A(2,-3)向上平移2個單位后得到的點的坐標(biāo)為_________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化簡,得y2+2y﹣4=0,
故所求方程為y2+2y﹣4=0
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;
(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不等于零的實數(shù)根,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在8×8的網(wǎng)絡(luò)中,△ABC是格點三角形(頂點是網(wǎng)格線的交點),若點A坐標(biāo)為(-1,3),按要求回答下列問題:
(1)建立符合條件的平面直角坐標(biāo)系,并寫出點B和點C的坐標(biāo);
(2)將△ABC先向下平移2個單位長度,在向右平移3個單位長度,得到△DEF,請在圖中畫出△DEF,并求出線段AC在平移過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 相等的角是對頂角
B. 若直線a與b互相垂直,記作a∥b
C. 內(nèi)錯角相等
D. 在同一平面內(nèi),過一點有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:EB=EC;
(2)若以點O、D、E、C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B、C在數(shù)軸上對應(yīng)的數(shù)分別為1、3、5,點P在數(shù)軸上對應(yīng)的數(shù)是﹣2,點P關(guān)于點A的對稱點為P1,點P1關(guān)于點B的對稱點為P2,點P2關(guān)于點C的對稱點為P3,點P3關(guān)于點A的對稱點為P4,…,則P1P2016的長度為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左邊到右邊的變形,因式分解正確的是( )
A. 2a2﹣2=2(a+1)(a﹣1) B. (a+3)(a﹣3)=a2﹣9
C. ﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3) D. x2﹣2x﹣3=x(x﹣2)﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com