【題目】如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點的坐標(biāo)為,頂點的坐標(biāo)為.

1)求二次函數(shù)的表達式和直線的表達式;

2)點是直線上的一個動點,過點軸的垂線,交拋物線于點,當(dāng)點在第一象限時,求線段長度的最大值;

3)在拋物線上存在異于、的點,使邊上的高為,請直接寫出點的坐標(biāo).

【答案】1;;(2;(3

【解析】

1)可設(shè)拋物線解析式為頂點式,由B點坐標(biāo)可求得拋物線的解析式,則可求得D點坐標(biāo),利用待定系數(shù)法可求得直線BD解析式;

2)設(shè)出P點坐標(biāo),從而可表示出PM的長度,利用二次函數(shù)的性質(zhì)可求得其最大值;

3)過QQGy軸,交BD于點G,過QQHBDH,可設(shè)出Q點坐標(biāo),表示出QG的長度,由條件可證得△DHG為等腰直角三角形,則可得到關(guān)于Q點坐標(biāo)的方程,可求得Q點坐標(biāo).

解:(1)設(shè)二次函數(shù)的表達式為.

在該二次函數(shù)的圖象上,

解得,

,

該二次函數(shù)的表達式為.

因為點軸上,所以可令,解得.

設(shè)直線的表達式為,

代入得,解得,

直線BD的表達式為.

2)如圖:

設(shè)點的橫坐標(biāo)為,則,

.

,則當(dāng)時,PM有最大值,

的最大值為.

3)如圖,過QQGy軸交BD于點G,交x軸于點E,作QHBDH

設(shè)Qx,-x2+2x+3),則Gx,-x+3),

QG=|-x2+2x+3--x+3|=|-x2+3x|,

∵△BOD是等腰直角三角形,

∴∠DBO=45°,

∴∠HGQ=BGE=45°,

當(dāng)BDQBD邊上的高為時,即QH=HG=

QG==4,

|-x2+3x|=4

當(dāng)-x2+3x=4時,=9-160,方程無實數(shù)根,

當(dāng)-x2+3x=-4時,解得x=-1x=4,

∴點的坐標(biāo)為:,;

∴綜上可知存在滿足條件的點Q,其坐標(biāo)為(-10)或(4,-5).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究活動一:

如圖1,某數(shù)學(xué)興趣小組在研究直線上點的坐標(biāo)規(guī)律時,在直線AB上的三點A1,3)、B2,5)、C49),有kAB2,kAC2,發(fā)現(xiàn)kABkAC,興趣小組提出猜想:若直線ykx+bk≠0)上任意兩點坐標(biāo)Px1,y1),Qx2,y2)(x1≠x2),則kPQ是定值.通過多次驗證和查閱資料得知,猜想成立,kPQ是定值,并且是直線ykx+bk≠0)中的k,叫做這條直線的斜率.

請你應(yīng)用以上規(guī)律直接寫出過S(﹣2,﹣2)、T42)兩點的直線ST的斜率kST

探究活動二

數(shù)學(xué)興趣小組繼續(xù)深入研究直線的斜率問題,得到正確結(jié)論:任意兩條不和坐標(biāo)軸平行的直線互相要直時,這兩條直線的斜率之積是定值.

如圖2,直線DE與直線DF垂直于點D,D22),E1,4),F4,3).請求出直線DE與直線DF的斜率之積.

綜合應(yīng)用

如圖3,⊙M為以點M為圓心,MN的長為半徑的圓,M12),N45),請結(jié)合探究活動二的結(jié)論,求出過點N的⊙M的切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是()

A.方程是關(guān)于x的一元二次方程

B.不是二次根式

C.一元二次方程有兩個不相等的實數(shù)根

D.一元二次方程只有一個根x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的一個根是﹣1,求另一個根及 k 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由;

(3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為2,將射線AB繞點A順時針旋轉(zhuǎn)α,所得射線與線段BD交于點M,作CEAM于點E,點N與點M關(guān)于直線CE對稱,連接CN

(1)如圖,當(dāng)0°<α<45°時:

①依題意補全圖;

②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;

(2)當(dāng)45°<α<90°時,探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;

(3)當(dāng)0°<α<90°時,若邊AD的中點為F,直接寫出線段EF長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點的中點,的弦,且,垂足為,連接于點,連接,

(1)求證:;

(2),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是作已知三角形的高的尺規(guī)作圖過程.

已知: .

求作: 邊上的高

作法:如圖,

(1)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于, 兩點;

(2)作直線,交于點;

(3)為圓心, 為半徑⊙O,CB的延長線交于點D,連接AD,線段AD即為所作的高.

請回答;該尺規(guī)作圖的依據(jù)是___________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案