【題目】如圖,在矩形 ABCD 中,點(diǎn) E,F 分別在 BC,CD 邊上,且 CE=3,CF=4.若△AEF 是等邊三角形,則 AB 的長為___.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC 60,∠ADC 120,AB BC,AD DC 2,則四邊形ABCD的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P為∠MAN邊AM上一動點(diǎn),⊙P切AN于點(diǎn)C,與AM交于點(diǎn)D(點(diǎn)D在點(diǎn)P的右側(cè)),作DF⊥AN于F,交⊙O于點(diǎn)E.
(1)連接PE,求證:PC平分∠APE;
(2)若DE=2EF,求∠A的度數(shù);
(3)點(diǎn)B為射線AN上一點(diǎn),且AB=8,射線BD交⊙P于點(diǎn)Q,sin∠A=.在P點(diǎn)運(yùn)動過程中,是否存在某個位置,使得△DQE為等腰三角形?若存在,求出此時AP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點(diǎn),所以對應(yīng)的方程x2﹣2|x|=0有 個實(shí)數(shù)根;
②方程x2﹣2|x|=2有 個實(shí)數(shù)根.
③關(guān)于x的方程x2﹣2|x|=a有4個實(shí)數(shù)根時,a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2k-1)x+k2-1=0有兩個實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯誤的是( 。
A.△ABE≌△AGFB.AE=AFC.AE=EFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1:拋物線y=ax2+bx+3交x軸于點(diǎn)A、B,連接AC、BC,tan∠ABC=1,tan∠BAC=3.
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)P在第一象限的拋物線上,連接PC、PA,若點(diǎn)P橫坐標(biāo)為t,△PAC的面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)S=3時,點(diǎn)G為第二象限拋物線上一點(diǎn),連接PG,CH⊥PG于點(diǎn)H,連接OH,若tan∠OHG=,求GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+4x-1與y軸交于點(diǎn)C,CD∥x軸交拋物線于另一點(diǎn)D,AB∥x軸交拋物線于點(diǎn)A,B,點(diǎn)A在點(diǎn)B的左側(cè),且兩點(diǎn)均在第一象限,BH⊥CD于點(diǎn)H.設(shè)點(diǎn)A的橫坐標(biāo)為m.
(1)當(dāng)m=1時,求AB的長.
(2)若AH=(CH-DH),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com