已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)當(dāng)拋物線y=kx2+(2k+1)x+2圖象與x軸兩個交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù)時(shí),若P(a,y1),Q(1,y2)是此拋物線上的兩點(diǎn),且y1>y2,請結(jié)合函數(shù)圖象確定實(shí)數(shù)a的取值范圍;
(3)已知拋物線y=kx2+(2k+1)x+2恒過定點(diǎn),求出定點(diǎn)坐標(biāo).
(1)證明:①當(dāng)k=0時(shí),方程為x+2=0,所以x=﹣2,方程有實(shí)數(shù)根,
②當(dāng)k≠0時(shí),∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,
∴無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)解:令y=0,則kx2+(2k+1)x+2=0,
解關(guān)于x的一元二次方程,得x1=﹣2,x2=﹣,
∵二次函數(shù)的圖象與x軸兩個交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù),
∴k=1.
∴該拋物線解析式為y=x2+3x+2,
.
由圖象得到:當(dāng)y1>y2時(shí),a>1或a<﹣3.
(3)依題意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,
則,
解得或.
所以該拋物線恒過定點(diǎn)(0,2)、(﹣2,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
清明期間,某校師生組成200個小組參加“保護(hù)環(huán)境,美化家園”植樹活動.綜合實(shí)際情況,校方要求每小組植樹量為2至5棵,活動結(jié)束后,校方隨機(jī)抽查了其中50個小組,根據(jù)他們的植樹量繪制出如圖所示的兩幅不完整統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下面的問題:
(1)請把條形統(tǒng)計(jì)圖補(bǔ)充完整,并算出扇形統(tǒng)計(jì)圖中,植樹量為“5棵樹”的圓心角是 72 °.
(2)請你幫學(xué)校估算此次活動共種多少棵樹.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知函數(shù)的圖象經(jīng)過點(diǎn).
(1)求函數(shù)的最小正周期與單調(diào)遞增區(qū)間.
(2)若,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙、丙、丁四人參加訓(xùn)練,近期的10次百米測試平均成績都是13.2秒,方差如表
選手 | 甲 | 乙 | 丙 | 丁 |
方差(秒2) | 0.020 | 0.019 | 0.021 | 0.022 |
則這四人中發(fā)揮最穩(wěn)定的是( 。
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某學(xué)校為了了解學(xué)生上學(xué)交通情況,選取九年級全體學(xué)生進(jìn)行調(diào)查。根據(jù)調(diào)查結(jié)果,畫出扇形統(tǒng)計(jì)圖(如圖),圖中“公交車”對應(yīng)的扇形圓心角為60°,“自行車”對應(yīng)的扇形圓心角為120°。已知九年級乘公交車上學(xué)的人數(shù)為50人.
(1)九年級學(xué)生中,騎自行車和乘公交車上學(xué)哪個更多?多多少人?
(2)如果全校有學(xué)生2 000人,學(xué)校準(zhǔn)備的400個自行車停車位是否足夠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com