【題目】如圖,二次函數(shù)y=﹣x2+bx的圖象與x軸的正半軸交于點(diǎn)A(4,0),過A點(diǎn)的直線與y軸的正半軸交于點(diǎn)B,與二次函數(shù)的圖象交于另一點(diǎn)C,過點(diǎn)C作CH⊥x軸,垂足為H.設(shè)二次函數(shù)圖象的頂點(diǎn)為D,其對(duì)稱軸與直線AB及x軸分別交于點(diǎn)E和點(diǎn)F.
(1)求這個(gè)二次函數(shù)的解析式;
(2)如果CE=3BC,求點(diǎn)B的坐標(biāo);
(3)如果△DHE是以DH為底邊的等腰三角形,求點(diǎn)E的坐標(biāo).
【答案】(1)y=﹣x2+4x;(2)B(0,2);(3)E(2,﹣12+8)
【解析】整體分析:
(1)把A(4,0)代入拋物線y=﹣x2+bx即可求b;(2)由拋物線的性質(zhì)求OF,AF的長,根據(jù)平行線分線段成比例定理,及CE=3BC,求OH,則可得CH,由△ACH∽△ABC求OB;(3)設(shè)點(diǎn)C的坐標(biāo)為(x,﹣x2+4x),由△ACH∽△AEF,用x表示點(diǎn)E的坐標(biāo),根據(jù)ED=EH,用勾股定理列方程求解.
解:(1)∵拋物線y=﹣x2+bx經(jīng)過點(diǎn)A(4,0),
∴﹣16+4b=0,∴b=4,
∴y=﹣x2+4x,
∴拋物線的解析式為y=﹣x2+4x;
(2)∵y=﹣(x﹣2)2+4,頂點(diǎn)D的坐標(biāo)是(2,4),∴OF=AF=2,
∵BO∥CH∥EF,∴=
∵CE=3BC,∴=,
∴OH=,∴CH=y﹣(﹣2)2+4=,
∵BO∥CH,∴△ACH∽△ABC,
∴=,∴=,∴OB=2,
∴B(0,2);
(3)設(shè)點(diǎn)C的坐標(biāo)為(x,﹣x2+4x),則H(x,0),
∵EF∥CH,∴△ACH∽△AEF,
∴=,∴=,∴EF=2x,∴E(2,2x),
∵EH=DE,∴=4﹣2x,
∴x1=﹣6+4,x2=﹣6﹣4(舍),
∴EF=2x=﹣12+8,
∴E(2,﹣12+8).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情填,
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng),如圖1,將矩形紙片ABCD沿對(duì)角線AC剪開,得到△ABC和△ACD、并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過點(diǎn)C作AC′的平行線,與DC′的延長線交于點(diǎn)E,則四邊形ACEC'的形狀是_________;
(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使B,A,D三點(diǎn)在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點(diǎn)F,連精AF并延長到點(diǎn)G,使FG=AF,連接CG,C′G,得到四邊形ACGC′,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至A′點(diǎn),A′C與BC′相交于點(diǎn)H.如圖4所示,連接CC',試求CH的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A. C分別在x、y軸的正半軸上,點(diǎn)D為BC邊上的點(diǎn),反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D(m,2)和AB邊上的點(diǎn)E(3,).
(1)求反比例函數(shù)的表達(dá)式和m的值;
(2)將矩形OABC的進(jìn)行折疊,使點(diǎn)O于點(diǎn)D重合,折痕分別與x軸、y軸正半軸交于點(diǎn)F,G,求折痕FG所在直線的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AEBC于點(diǎn)E,延長BC至點(diǎn)F,點(diǎn)使,連接AF、DE、DF。
(1)求證:四邊形AEFD是矩形;
(2)若,,,求AE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)甲、乙兩家文具商店出售同樣的毛筆和宣紙.毛筆每支18元,宣紙每張2元.甲商店推出的優(yōu)惠方法為買一支毛筆送兩張宣紙;乙商店的優(yōu)惠方法為按總價(jià)的九折優(yōu)惠.小麗想購買5支毛筆,宣紙x張(x≥5).
(1)若到甲商店購買,應(yīng)付______ 元(用代數(shù)式表示);
(2)若到乙商店購買,應(yīng)付______ 元(用代數(shù)式表示);
(3)若小麗要買宣紙10張,應(yīng)選擇哪家文具商店?若買100張呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點(diǎn)D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點(diǎn)F,AO⊥BC,垂足為點(diǎn)E,CE=2.
(1)求AB的長;
(2)求⊙O的半徑.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164551680/STEM/edc8c851f08548f08f9e61b4dab2d43e.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB⊥AC,對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一個(gè)角度α(0°<α≤90°),分別交線段BC,AD于點(diǎn)E,F,連接BF.
(1)如圖1,在旋轉(zhuǎn)的過程中,求證:OE=OF;
(2)如圖2,當(dāng)旋轉(zhuǎn)至90°時(shí),判斷四邊形ABEF的形狀,并證明你的結(jié)論;
(3)若AB=1,BC=,且BF=DF,求旋轉(zhuǎn)角度α的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:順次連接矩形各邊的中點(diǎn),得到一個(gè)菱形,如圖①;再順次連接菱形各邊的中點(diǎn),得到一個(gè)新的矩形.如圖②;然后順次連接新的矩形各邊的中點(diǎn),得到一個(gè)新的菱形,如圖③;如此反復(fù)操作下去,則第3個(gè)圖形中直角三角形的個(gè)數(shù)有______個(gè),第2018個(gè)圖形中直角三角形的個(gè)數(shù)有______個(gè).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com