【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知AB⊥BC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點E,已知AH長米,HF長米,HE長1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點E到地面的距離.(結(jié)果保留根號)
【答案】(1) 籃板底部支架HE與支架AF所成的角∠FHE的度數(shù)為45°;(2) 籃板底部點E到地面的距離是(+)米
【解析】
(1)由cos∠FHE可得答案;
(2)延長FE交CB的延長線于M,過點A作AG⊥FM于G,過點H作HN⊥AG于N,據(jù)此知GM=AB,HN=EG,Rt△ABC中,求得AB=BCtan60°;Rt△ANH中,求得HN=AHsin45°;根據(jù)EM=EG+GM可得答案.
(1)在Rt△EFH中,cos∠FHE,∴∠FHE=45°.
答:籃板底部支架HE與支架AF所成的角∠FHE的度數(shù)為45°;
(2)延長FE交CB的延長線于M,過點A作AG⊥FM于G,過點H作HN⊥AG于N,則四邊形ABMG和四邊形HNGE是矩形,∴GM=AB,HN=EG.在Rt△ABC中,∵tan∠ACB,∴AB=BCtan60°=1,∴GM=AB.在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°,∴EM=EG+GM.
答:籃板底部點E到地面的距離是()米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,以AB為直徑的⊙O交AC于點D.過點C作CF∥AB,在CF上取一點E,使DE=CD,連接AE.對于下列結(jié)論:①AD=DC;②△CBA∽△CDE;③=;④AE為⊙O的切線,一定正確的結(jié)論全部包含其中的選項是( )
A. ①② B. ①②③ C. ①④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則AM+BM+CM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.
(1)設a=2,點B(4,2)在函數(shù)y1、y2的圖象上.
①分別求函數(shù)y1、y2的表達式;
②直接寫出使y1>y2>0成立的x的范圍;
(2)如圖①,設函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;
(3)設m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數(shù)表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的周長是20cm,以AB,AD為邊向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面積之和為68cm2,那么矩形ABCD的面積是( 。
A. 9cm2 B. 16cm2 C. 21cm2 D. 24cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗探究:
有A,B兩個不透明的布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和2.B布袋中有三個完全相同的小球,分別標有數(shù)字-1,-2和-3.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點的一個坐標為.
(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;
(2)求點Q落在直線上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAB的頂點坐標分別為O(0,0)、A(3,2)、B(2,0),將這三個頂點的坐標同時擴大到原來的2倍,得到對應點D、E、F.
(1)在圖中畫出△DEF;
(2)點E是否在直線OA上?為什么?
(3)△OAB與△DEF______位似圖形(填“是”或“不是”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC和△CDE都為等腰直角三角形,∠ACB=∠ECD=90°.
探究:如圖①,當點A在邊EC上,點C在線段BD上時,連結(jié)BE、AD.求證:BE=AD,BE⊥AD.
拓展:如圖②,當點A在邊DE上時,AB、CE交于點F,連結(jié)BE.若AE=2,AD=4,則的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com