【題目】如圖,直線AB:y=﹣x﹣b分別與x、y軸交于A(6,0)、B兩點(diǎn).
(1)求直線AB的解析式;
(2)若P為A點(diǎn)右側(cè)x軸上的一動(dòng)點(diǎn),以P為直角頂點(diǎn),BP為腰在第一象限內(nèi)作等腰直角△BPQ,連接QA并延長(zhǎng)交y軸于點(diǎn)K,當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),K點(diǎn)的位置是否發(fā)生變化?若不變,請(qǐng)求出它的坐標(biāo);如果變化,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x+6;(2)不變化,K(0,-6)
【解析】
(1)根據(jù)點(diǎn)A的坐標(biāo),利用待定系數(shù)法可求出直線AB的解析式;
(2)過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H,易證△BOP≌△PHQ,利用全等三角形的性質(zhì)可得出OB=HP,OP=HQ,兩式相加得PH+PO=BO+QH,即OA+AH=BO+QH,又OA=OB,可得AH=QH,即△AHQ是等腰直角三角形,進(jìn)而證得△AOK為等腰直角三角形,求出OK=OA=6,即可得出K點(diǎn)的坐標(biāo).
解:(1)將A(6,0)代入y=-x-b,得:-6-b=0,
解得:b=-6,
∴直線AB的解析式為y=-x+6;
(2)不變化,K(0,-6)
過(guò)Q作QH⊥x軸于H,
∵△BPQ是等腰直角三角形,
∴∠BPQ=90°,PB=PQ,
∵∠BOA=∠QHA=90°,
∴∠BPO=∠PQH,
∴△BOP≌△HPQ,
∴PH=BO,OP=QH,
∴PH+PO=BO+QH,
即OA+AH=BO+QH,
又OA=OB,
∴AH=QH,
∴△AHQ是等腰直角三角形,
∴∠QAH=45°,
∴∠OAK=45°,
∴△AOK為等腰直角三角形,
∴OK=OA=6,
∴K(0,-6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從今年起,我市生物和地理會(huì)考實(shí)施改革,考試結(jié)果以等級(jí)形式呈現(xiàn),分A、B、C、D四個(gè)等級(jí).某校八年級(jí)為了迎接會(huì)考,進(jìn)行了一次模擬考試,隨機(jī)抽取部分學(xué)生的生物成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)這次抽樣調(diào)查共抽取了 名學(xué)生的生物成績(jī).扇形統(tǒng)計(jì)圖中,D等級(jí)所對(duì)應(yīng)的扇形圓心角度數(shù)為 °;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該校八年級(jí)共有600名學(xué)生,請(qǐng)估計(jì)這次模擬考試有多少名學(xué)生的生物成績(jī)等級(jí)為D?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
根據(jù)所給信息,解答下列問(wèn)題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“機(jī)動(dòng)車行駛到斑馬線要禮讓行人”等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)査了部分學(xué)生,調(diào)查結(jié)果分為五種:A非常了解,B比較了解,C基本了解,D不太了解,E完全不知.實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)本次共調(diào)查了 名學(xué)生,扇形統(tǒng)計(jì)圖中D所對(duì)應(yīng)扇形的圓心角為 度;
(2)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整(畫(huà)圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù));
(3)該校共有800名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中對(duì)這些交通法規(guī)“非常了解”的有 名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠COE=90° ,OF 平分∠AOE,
(1)若∠BOE=80°,求∠COF的度數(shù).
(2)若∠COF=α(0°<α<90°),則∠BOE= (用含α的式子表示) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB=60cm.
(1)如圖1,點(diǎn)P沿線段AB自A點(diǎn)向B點(diǎn)以2厘米/秒運(yùn)動(dòng),同時(shí)點(diǎn)Q沿線段BA自B點(diǎn) 向A點(diǎn)以4厘米/秒運(yùn)動(dòng),問(wèn)經(jīng)過(guò)幾秒后P、Q相遇?
(2)在(1)的條件下,幾秒鐘后,P、Q相距12cm?
(3)如圖2,AO=PO=10厘米,∠POB=40°,點(diǎn)P繞著點(diǎn)O以10度/秒的速度順時(shí)針 旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿線段BA自B點(diǎn)向A點(diǎn)運(yùn)動(dòng),假若點(diǎn)P、Q兩點(diǎn)能相遇,求點(diǎn)Q運(yùn)動(dòng)的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論:①平面內(nèi)3條直線兩兩相交,共有3個(gè)交點(diǎn);②在平面內(nèi),若∠AOB =40°,∠AOC= ∠BOC,則∠AOC的度數(shù)為20°;③若線段AB=3, BC=2,則線段AC的長(zhǎng)為1或5;④若∠a+∠β=180°,且∠a<∠β,則∠a的余角為(∠β-∠a).其中正確結(jié)論的個(gè)數(shù)( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用同樣大小的圍棋子按如圖所示的方式擺圖案,按照這樣的規(guī)律擺下去,第12個(gè)圖案的圍棋子個(gè)數(shù)是( 。
A. 16 B. 28 C. 29 D. 38
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com