【題目】已知:△ABC是等腰直角三角形,∠ACB=90°,AB=,將AC邊所在直線向右平移,所得直線MN與BC邊的延長線相交于點M,點D在AC邊上,CD=CM,過點D的直線平分∠BDC,與BC交于點E,與直線MN交于點N,聯(lián)接AM.

(1)若CM=,則AM=

(2)如圖①,若點E是BM的中點,求證:MN=AM;

(3)如圖②,若點N落在BA的延長線上,求AM的長.

【答案】(1)(2)證明見解析(3)

【解析】分析:(1)、根據(jù)Rt△ACM的勾股定理得出AM的長度;(2)、①過點B作BF⊥BC與NE的延長線交于點F,首先證明△BEF≌△MEN,然后再證明Rt△BDC≌Rt△AMC,從而得出BD=AM,根據(jù)角平分線的性質(zhì)以及平行線的性質(zhì)得出∠BDF=∠F,從而得出答案;②過點D作DH⊥MN于點H,首先證明四邊形CDHM是正方形,然后證明Rt△BDC≌Rt△AMC≌Rt△NDH,根據(jù)全等得出∠1=∠2=∠5=30°,根據(jù)Rt△BDC的三角函數(shù)得出答案.

詳解:(1);

(2)證明:如圖①,過點B作BF⊥BC與NE的延長線交于點F,

∵∠ACB=90°,MN∥AC,∴∠FBE=∠NME=90°, 又BE=ME,∠BEF=∠MEN,

∴△BEF≌△MEN,∴BF=MN, ∵CD=CM,BC=AC, ∴Rt△BDC≌Rt△AMC,∴BD=AM,

∵NF平分∠BDC,∴∠BDF=∠FDC, 又由BF∥AC,得:∠F=∠FDC,

∴∠BDF=∠F,∴BD=BF,∴MN=AM.

(3)如圖②,過點D作DH⊥MN于點H,

∵MN∥AC,∠ACB=90°,CD=CM,∴四邊形CDHM是正方形,

又點N在BA的延長線上,∴△BNM∽△BAC, ∵AC=BC,∴NM=BN,

又MH=CM=DH,∴NH=BC, ∴Rt△BDC≌Rt△AMC≌Rt△NDH, ∴BD=AM=ND,∠5=∠6,

又∠1=∠2,∠2=∠6,∴∠1=∠2=∠5, ∵∠1+∠2+∠5=90°,

∴∠1=∠2=∠5=30°, 在Rt△ABC中,AC=BC,AB=,∴AC=BC=4,

在Rt△BDC中, ∴AM= .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

13x+7=32-2x

2

3

4x5倍與2的和等于x3倍與4的差,求x;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.

(1)A、B兩種商品的單價分別是多少元?

(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強在某超市同時購買A,B兩種商品共三次,僅有第一次超市將A,B兩種商品同時按折價格出售,其余兩次均按標價出售. 小強三次購買A,B商品的數(shù)量和費用如下表所示:

A商品的數(shù)量(個)

B商品的數(shù)量(個)

購買總費用(元)

第一次購買

8

6

930

第二次購買

6

5

980

第三次購買

3

8

1040

(1)求 A,B商品的標價;

(2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A在數(shù)軸上對應的數(shù)為3,點B對應的數(shù)為b,其中A、B兩點之間的距離為5

1)求b的值

2)當BA左側(cè)時,一點D從原點O出發(fā)以每秒2個單位的速度向左運動,請問D運動多少時間,可以使得DA、B兩點的距離之和為8?

3)當BA的左側(cè)時,一點DO出發(fā)以每秒2個單位的速度向左運動,同時點MB出發(fā),以每秒1個單位的速度向左運動,點NA出發(fā),以每秒4個單位的速度向右運動;在運動過程中,MN的中點為P,OD的中點為Q,請問MN-2PQ的值是否會發(fā)生變化?若發(fā)生變化,請說明理由;如果沒有變化,請求出這個值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,李明去圖書館借書,下圖是他離家的距離 y (千米)與時間 x (分鐘)的函數(shù)圖象,根據(jù)圖象信息,解答下列問題:

1)李明家離圖書館有多遠?

2)李明在圖書館停留了多長時間?

3)李明從圖書館返回家中用了多少時間?

4)李明全程的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為﹣7,點B表示的數(shù)為5,點C到點A,點B的距離相等,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設運動的時間為tt>0)秒.

(1)點C表示的數(shù)是   

(2)求當t等于多少秒時,點P到達點B處;

(3)點P表示的數(shù)是   (用含有t的代數(shù)式表示);

(4)求當t等于多少秒時,PC之間的距離為2個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以“綠色生活,美麗家園”為主題的2019年中國北京世界園藝博覽會(簡稱北京世園會)已拉開帷幕,講述人與自然和譜共生的精彩故事,世園會甲工程隊制作園藝造型300個與乙工程隊制作園藝造型400個所用時間相等,乙工程隊每天比甲工程隊多制作10個園藝造型,求甲工程隊每天制作園藝造型多少個?

兩名同學所列的方程如下:

根據(jù)以上信息,解答下列問題:

1)小明同學所列方程中的x表示 ,小紅同學所列方程中的y ;

2)根據(jù)你選擇的方程,求出甲工程隊每天制作園藝造型多少個.

查看答案和解析>>

同步練習冊答案