【題目】如圖①,已知拋物線(xiàn)y=﹣x2+x+2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),拋物線(xiàn)的頂點(diǎn)為Q,連接BC.
(1)求直線(xiàn)BC的解析式;
(2)點(diǎn)P是直線(xiàn)BC上方拋物線(xiàn)上的一點(diǎn),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,在直線(xiàn)BC上有一動(dòng)點(diǎn)M,當(dāng)線(xiàn)段PD最大時(shí),求PM+MB最小值;
(3)如圖②,直線(xiàn)AQ交y軸于G,取線(xiàn)段BC的中點(diǎn)K,連接OK,將△GOK沿直線(xiàn)AQ平移得△G′O'K′,將拋物線(xiàn)y=﹣x2+x+2沿直線(xiàn)AQ平移,記平移后的拋物線(xiàn)為y′,當(dāng)拋物線(xiàn)y′經(jīng)過(guò)點(diǎn)Q時(shí),記頂點(diǎn)為Q′,是否存在以G'、K'、Q'為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)G′的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣.(2);(3)點(diǎn)G′坐標(biāo)為()或(3,5)或(5,)或(4,)或(,).
【解析】
(1)利用待定系數(shù)法求出B,C兩點(diǎn)坐標(biāo)即可解決問(wèn)題.
(2)因?yàn)椤?/span>DPM是定值,推出當(dāng)PM的值最大時(shí),PD的值最大,構(gòu)建二次函數(shù)求出PD最大時(shí),點(diǎn)P坐標(biāo),在y軸上取一點(diǎn)G,使得sin∠GBC=,作GK⊥BC于K,因?yàn)?/span>PM+BM=PM+ME,把問(wèn)題轉(zhuǎn)化為:當(dāng)P.M,E共線(xiàn),且PE⊥BG時(shí),PM+PE的值最小,由此求出點(diǎn)E坐標(biāo)即可解決問(wèn)題.
(3)分三種情形構(gòu)建方程即可解決問(wèn)題.
解:(1)令y=0,﹣ x2+x+2=0,解得x=﹣1和4,
∴A(﹣1,0),B(4,0),
令x=0,y=2,
∴C(0,2),
設(shè)直線(xiàn)BC是解析式為y=kx+b,則有,解得,
∴直線(xiàn)BC的解析式為y=﹣x+2.
(2)如圖1中,作PM∥y軸交BC于M.
∵∠DPM是定值,
∴當(dāng)PM的值最大時(shí),PD的值最大,設(shè)P(m,﹣ m2+m+2),則M(m,﹣m+2),
∴PM=﹣m2+2m=﹣(m﹣2)2+2,
∵﹣<0,
∴m=2時(shí),PM的值有最大值,即PD的值最大,此時(shí)P(2,3).
在y軸上取一點(diǎn)G,使得sin∠GBC=,作GK⊥BC于K,
∵sin∠GBK==,設(shè)GK=k,BG=3k,則BK=2k,
∵∠GCK=∠BCO,∠GKC=∠BOC=90°,
∴△CKG∽△COB,
∴,
∴,
∴CK=k,CG=k,
∵CK+BK=BC,
∴k+2k=2,
∴k=,
∴OG=OC﹣CG=,
∴G(0,),
∴直線(xiàn)BG的解析式為y=﹣x+,
∵PM+BM=PM+ME,
∴當(dāng)P.M,E共線(xiàn),且PE⊥BG時(shí),PM+PE的值最小,
∵PE⊥BG,
∴直線(xiàn)PE的解析式為y=y=x﹣2,
由,解得,
∴E(),
∴PE=,
∴PM+BM的最小值為.
(3)如圖3中,存在.
由題意A(﹣1,0),Q(,),Q′(4,),C(0,2),K(2, ),
∴直線(xiàn)AQ的解析式為y=x+,
∴G(0,),
設(shè)G′(a, a+),則K′(a+2, a+),
當(dāng)Q′G′=Q′K′時(shí),(a﹣4)2+(a﹣5)2=(a﹣2)2+(a﹣)2,
解得a=.
此時(shí)G().
當(dāng)Q′G′=G′K′時(shí),(a﹣4)2+(a﹣5)2=22+()2,
整理得:a2﹣8a+15=0,
解得a=3和5,
此時(shí)G′((3,5)或(5,),
當(dāng)Q′K′=G′K′時(shí),(a﹣2)2+(a﹣)2=22+()2,
整理得:3a2﹣8a+15=0,
解得a=4和,
此時(shí)G′(4,)或(,),
綜上所述,滿(mǎn)足條件的點(diǎn)G′坐標(biāo)為()或(3,5)或(5,)或(4,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖像與x軸交于點(diǎn)(-2,0)、(),且,與y軸的正半軸的交點(diǎn)在(0,2)的下方,則下列結(jié)論中:①ab>0;②4a-2b+c=0;③2a-b+1<0;④a<b<c,其中正確的結(jié)論有( ).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校團(tuán)委計(jì)劃在元且期間組織優(yōu)秀團(tuán)員到敬老院去服務(wù),現(xiàn)選出了10名優(yōu)秀團(tuán)員參加服務(wù),其中男生6人,女生4人.
若從這10人中隨機(jī)選一人當(dāng)隊(duì)長(zhǎng),求選中女生當(dāng)隊(duì)長(zhǎng)的概率;
現(xiàn)決定從甲、乙中選一人當(dāng)隊(duì)長(zhǎng),他們準(zhǔn)備以游戲的方式?jīng)Q定由誰(shuí)擔(dān)任,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則選甲為隊(duì)長(zhǎng);否則,選乙為隊(duì)長(zhǎng)試問(wèn)這個(gè)游戲公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22017
首先設(shè)S=1+2+22+23+24+…+22017 ① 則2S=2+22+23+24+25+…+22018 ②
②﹣①得S=22018﹣1 即1+2+22+23+24+…+22017=22018﹣1
以上解法,在數(shù)列求和中,我們稱(chēng)之為:“錯(cuò)位相減法”
請(qǐng)你根據(jù)上面的材料,解決下列問(wèn)題
(1)求1+3+32+33+34+…+32019的值
(2)若a為正整數(shù)且,求
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于世界人口增長(zhǎng)、水污染以及水資源浪費(fèi)等原因,全世界面臨著淡水資源不足的問(wèn)題,我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,人均占水量?jī)H為2400m3左右,我國(guó)已被聯(lián)合國(guó)列為13個(gè)貧水國(guó)家之一,合理利用水資源是人類(lèi)可持續(xù)發(fā)展的當(dāng)務(wù)之急,而節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護(hù)水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門(mén)對(duì)某小區(qū)的20戶(hù)居民的月用水量進(jìn)行了調(diào)查,數(shù)據(jù)如下:(單位:t)
6.7 | 8.7 | 7.3 | 11.4 | 7.0 | 6.9 | 11.7 | 9.7 | 10.0 | 9.7 |
7.3 | 8.4 | 10.6 | 8.7 | 7.2 | 8.7 | 10.5 | 9.3 | 8.4 | 8.7 |
整理數(shù)據(jù) 按如下分段整理樣本數(shù)據(jù)并補(bǔ)至表格:(表1)
用水量x(t) | 6.0≤x<7.5 | 7.5≤x<9.0 | 9.0≤x<10.5 | 10.5≤x<12 |
人數(shù) | a | 6 | b | 4 |
分析數(shù)據(jù),補(bǔ)全下列表格中的統(tǒng)計(jì)量;(表2)
平均數(shù) | 中位數(shù) | 眾數(shù) |
8.85 | c | d |
得出結(jié)論:
(1)表中的a= ,b= ,c= ,d= .
(2)若用表1中的數(shù)據(jù)制作一個(gè)扇形統(tǒng)計(jì)圖,則9.0≤x<10.5所示的扇形圓心角的度數(shù)為 度.
(3)如果該小區(qū)有住戶(hù)400戶(hù),請(qǐng)根據(jù)樣本估計(jì)用水量在6.0≤x<9.0的居民有多少戶(hù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)是的重心,過(guò)作的平行線(xiàn),分別交于點(diǎn),交于點(diǎn),作,交于點(diǎn),若四邊形的面積為4,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買(mǎi)10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu). 經(jīng)調(diào)查:購(gòu)買(mǎi)3臺(tái)甲型設(shè)備比購(gòu)買(mǎi)2臺(tái)乙型設(shè)備多花16萬(wàn)元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少花6萬(wàn)元.
(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購(gòu)買(mǎi)節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E在線(xiàn)段BC上,△ADE是等邊三角形,且∠BAC=120°
(1)求證:△ABD∽△CAE;
(2)若BD=2,CE=8,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在半圓O上,半徑OB=2,AD=10,點(diǎn)C在弧BD上移動(dòng),連接AC,H是AC上一點(diǎn),∠DHC=90°,連接BH,點(diǎn)C在移動(dòng)的過(guò)程中,BH的最小值是( 。
A. 5B. 6C. 7D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com