【題目】如圖,A過(guò)OBCD的三頂點(diǎn)O、D、C,邊OB與A相切于點(diǎn)O,邊BC與O相交于點(diǎn)H,射線OA交邊CD于點(diǎn)E,交A于點(diǎn)F,點(diǎn)P在射線OA上,且∠PCD=2∠DOF,以O(shè)為原點(diǎn),OP所在的直線為x軸建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(0,﹣2).

(1)若BOH=30°,求點(diǎn)H的坐標(biāo);

(2)求證:直線PC是A的切線;

(3)若OD=,求A的半徑.

【答案】(1)(1,﹣);(2)詳見(jiàn)解析;(3).

【解析】

(1)先判斷出OH=OB=2,利用三角函數(shù)求出MH,OM,即可得出結(jié)論;
(2)先判斷出∠PCD=∠DAE,進(jìn)而判斷出∠PCD=∠CAE,即可得出結(jié)論;
(3)先求出OE═3,進(jìn)而用勾股定理建立方程,r2-(3-r)2=1,即可得出結(jié)論.

(1)解:如圖,過(guò)點(diǎn)HHMy軸,垂足為M.

∵四邊形OBCD是平行四邊形,

∴∠B=ODC

∵四邊形OHCD是圓內(nèi)接四邊形

∴∠OHB=ODC

∴∠OHB=B

OH=OB=2

∴在RtOMH中,

∵∠BOH=30°,

MH=OH=1,OM=MH=,

∴點(diǎn)H的坐標(biāo)為(1,﹣),

(2)連接AC.

OA=AD,

∴∠DOF=ADO

∴∠DAE=2DOF

∵∠PCD=2DOF,

∴∠PCD=DAE

OB與⊙O相切于點(diǎn)A

OBOF

OBCD

CDAF

∴∠DAE=CAE

∴∠PCD=CAE

∴∠PCA=PCD+ACE=CAE+ACE=90°

∴直線PC是⊙A的切線;

(3)解:⊙O的半徑為r.

RtOED中,DE=CD=OB=1,OD= ,

OE═3

OA=AD=r,AE=3﹣r.

RtDEA中,根據(jù)勾股定理得,r2﹣(3﹣r)2=1

解得r=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)求出四邊形ABPC的面積最大時(shí)的P點(diǎn)坐標(biāo)和四邊形ABPC的最大面積;

(3)在直線BC找一點(diǎn)Q,使得△QOC為等腰三角形,寫出Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃一次性購(gòu)買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購(gòu)買2個(gè)排球和3個(gè)籃球共需340元.

(1)求每個(gè)排球和籃球的價(jià)格:

(2)若該校一次性購(gòu)買排球和籃球共60個(gè),總費(fèi)用不超過(guò)3800元,且購(gòu)買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.

①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;

②在學(xué)校按怎樣的方案購(gòu)買時(shí),費(fèi)用最低?最低費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的三個(gè)頂點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格中,已知,,.

(1)畫出關(guān)于軸對(duì)稱的(其中,,分別是,,的對(duì)應(yīng)點(diǎn),不寫畫法);

(2)分別寫出,,三點(diǎn)的坐標(biāo).

(3)請(qǐng)寫出所有以為邊且與全等的三角形的第三個(gè)頂點(diǎn)(不與重合)的坐標(biāo)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)現(xiàn)有學(xué)生2650人,學(xué)校為了進(jìn)一步了解學(xué)生課余生活,組織調(diào)查各興趣小組活動(dòng)情況,為此校學(xué)生會(huì)進(jìn)行了一次隨機(jī)抽樣調(diào)查,根據(jù)采集到的數(shù)據(jù),繪制如下兩個(gè)統(tǒng)計(jì)圖(不完整)

請(qǐng)你根據(jù)兩個(gè)統(tǒng)計(jì)圖中提供的信息,解答下列問(wèn)題:

(1)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請(qǐng)將條形統(tǒng)計(jì)圖中的“體育”部分的圖形補(bǔ)充完整;

(2)愛(ài)好“書(shū)畫”的人數(shù)占被調(diào)查人數(shù)的百分?jǐn)?shù)是多少?估計(jì)該中學(xué)現(xiàn)有的學(xué)生中,愛(ài)好“書(shū)畫”的人數(shù);

(3)求愛(ài)好“音樂(lè)”的人數(shù)對(duì)應(yīng)扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(x為任意實(shí)數(shù))經(jīng)過(guò)下圖中兩點(diǎn)M(1,﹣2)、N(m,0),其中M為拋物線的頂點(diǎn),N為定點(diǎn).下列結(jié)論:

若方程ax2+bx+c=0的兩根為x1,x2(x1<x2),則﹣1<x1<0,2<x2<3;

當(dāng)xm時(shí),函數(shù)值y隨自變量x的減小而減。

③a>0,b<0,c>0.

垂直于y軸的直線與拋物線交于C、D兩點(diǎn),其C、D兩點(diǎn)的橫坐標(biāo)分別為s、,則s+t=2.

其中正確的是( 。

A. ①② B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平行四邊形ABCD中,AM=CN.求證:四邊形MBND是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲乙兩人以相同的路線前往距離單位的培訓(xùn)中心參加學(xué)習(xí),圖中,分別表示甲乙兩人前往目的地所走的路程(千米)隨時(shí)間()變化的函數(shù)圖象,以下說(shuō)法:

①乙比甲提前12分鐘到達(dá)

②甲平均速度為0.25千米/小時(shí)

③甲、乙相遇時(shí),乙走了6千米

④乙出發(fā)6分鐘后追上甲,其中正確的是(  )

A.①②B.③④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見(jiàn)錯(cuò)誤的糾正情況,收集整理了學(xué)生在作業(yè)和考試中的常見(jiàn)錯(cuò)誤,編制了10道選擇題,每題3分,對(duì)他所教的初三(1)班、(2)班進(jìn)行了檢測(cè),如圖表示從兩班各隨機(jī)抽取的10名學(xué)生的得分情況.

1)利用圖中提供的信息,補(bǔ)全下表:

班級(jí)

平均數(shù)/

中位數(shù)/

眾數(shù)/

初三(1)班

__________

24

________

初三(2)班

24

_________

21

2)若把24分以上(含24分)記為優(yōu)秀,兩班各40名學(xué)生,請(qǐng)估計(jì)兩班各有多少名學(xué)生成績(jī)優(yōu)秀;

3)觀察上圖的數(shù)據(jù)分布情況,請(qǐng)通過(guò)計(jì)算說(shuō)明哪個(gè)班的學(xué)生糾錯(cuò)的得分更穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊(cè)答案